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NOMENCLATURE

A dimensional constant; activation energy Ô thickness of coating; water layer

a wire radius; dimensional constant V viscosity coefficient of snow

B dimensional constant Vc viscosity coefficient of snow when snow densi

b dimensional constant is extrapolated to zero

C vapor concentration 6 temperature in degrees Celsius

Cp> c heat capacity X thermal conductivity

Ci fractional increase in snow density per meter 7T 3.1416; total pressure

water equivalent of load per hour at ps = 0 P density; thermal resistivity
and 6 = 0°C O salinity (grams of salt per gram of sea ice)

c2 dimensional constant of compaction par­ T time increment
ameter of snow (m3/mg)

0 correlation coefficient
^3 dimensional constant (fractional settling 

rate at 0°C)
CO compressibility

c4 dimensional constant Subscripts

D diffusion coefficient a air; adiabatic

F load on the object b brine

F force per unit length bi bubbly ice

G air mass flow rate c cubic

H enthalpy e effective; experimental

h thickness of a liquid layer f fusion

L latent heat h precipitated hydrate

M molecular weight; molecular weight of air i ice

m net sublimation per unit volume; mass; mass ia ice containing air bubbles
flux £ liquid; linear; linear thermal boundary

P hydrostatic pressure; vapor pressure m melting; material; mean
AP0 maximum excess pressure n /7th layer
P pressure; precipitate o through air
R gas law constant P pressure
s fractional salt content; entropy per unit mass s snow; solid; sinusoidal boundary; sublimation
t time saturation; and distance increment

T temperature in kelvins sa snow containing air

U internal energy se snow (effective)

1/ volume of an object, ice; fractional volume si sea ice
content t isothermal, theoretical

V penetration velocity; volume per unit mass
V volume; vapor

weight of snow above a given layer expressed 
in terms of water equivalent in meters

w water

w mass of unfrozen water

a thermal diffusivity; proportional constant

Pt ratio of vapor concentration to temperature

y coefficient of thermal expansion

v



REVIEW OF THERMAL PROPERTIES OF 
SNOW, ICE AND SEA ICE

Yin-Chao Yen

INTRODUCTION

This review was undertaken in an attempt to sum­
marize and analyze as completely as possible the re­
ported data on the various thermal properties of 
snow, ice and sea ice and to provide readily available 
information for practical use in the field o f snow and 
ice research.

In the second section, research on the density, 
linear and cubic expansion coefficients and compres­
sibility o f ice is summarized. Slight variations in 
density due to various defects such as contamination 
(by solids as well as by air), aging, and crystallographic 
form are discussed. In the temperature range o f prac­
tical interest in cold regions, both the linear and cubic 
coefficients o f expansion can be satisfactorily ex­
pressed as linear functions of temperature. The re­
ported work on isothermal and adiabatic compressi­
b ility  is rather limited and the variation o f results o f 
different investigators is pronounced.

In the third section, snow density changes due to 
various metamorphism processes are discussed. These 
phenomena are important because o f their effect on 
the physical and mechanical properties o f snow and 
on the physical processes occurring within a snow 
mass.

The process of regelation is described in the fourth 
section. A great number o f theoretical analyses and 
experimental works are thoroughly reviewed and 
compared. Discrepancies between the proposed the­
ories and the experimental results are great. The re­
lationships between the penetration velocity o f the 
object passing through ice and the wire material, 
wire size, stress level and ice purity are also discussed. 
Knowledge o f the physics o f regelation may provide 
an insight into the processes o f sintering and the de­
velopment o f intergranular bonds in snow.

In the fifth  section, the heat capacity and ther­
mal conductivity o f snow and fresh-water ice over a

great range o f temperatures are reviewed, and expres­
sions developed by regcession analysis are presented. 
These properties control the rate o f propagation o f 
thermal waves through the snow and ice mass and 
indicate both the relative potential as a heat storage 
medium and the rate o f heat dissipation. The effects 
of water vapor diffusion (under either natural or 
forced convection) on the temperature profile and 
mass redistribution within a snow layer are discussed, 
providing a basis for interpreting the field data.

Finally, a general discussion o f the thermal prop­
erties o f sea ice is given. Since sea ice is a much more 
complicated material to deal with than pure ice, and 
its composition (the relative proportion o f its con­
stituents) is strongly temperature-and time-dependent, 
few experimental studies have been reported. It is be­
lieved that predicted thermal properties o f sea ice, 
based on some simplified sea ice structural models, 
give a good approximation o f the real value. In this 
review, expressions relating specific heat, heat o f fu ­
sion, density, thermal conductivity and air bubble 
content for some specific temperature ranges are given. 
Thermal conductivity models and methods o f deter­
mining thermal diffusivity are also briefly described.

DENSITY, THERMAL EXPANSION 
AND COMPRESSIBILITY OF ICE

Density
According to a review work by Dorsey (1940), the 

bulk density o f ice at 0°C and atmospheric pressure 
varies from 0.916 to 0.918 Mg/m3. Barnes (1901) 
and Dantl and Gregora (1968) indicated that ice 
density p . decreases slightly with age. Nichols (1899) 
reported densities at 0°C o f 0.91795, 0.91632 and 
0.91603 Mg/m3 for freshly formed natural ice, one- 
year-old natural ice and artificial ice frozen at low 
temperatures, respectively. However, Barnes found 
much smaller variation in the ice samples taken from



Figure 1. Density o f  ice as a function o f  temperature. A —deduced by Lonsdale 
(1958) from the average o f  several diffraction measurements made prior to 1958. 
o —deduced by Eisenberg and Kauzmann (1969) from X-ray diffraction measure­
ments by LaPiaca and Post (1960). • —deduced by Hobbs (1974) from X-ray 
diffraction measurements made by Brill and Tippe (1967).

the St. Lawrence River; densities at 0°C of new, one- 
year-old and two-year-old ice were 0.91662, 0.91648 
and 0.91637 Mg/m3, respectively.

There are many other factors affecting the varia­
tion of the bulk density of ice p v These include the 
number and nature of the cracks, the degree of air 
entrainment, ice purity, dislocation, and stacking 
fault vacancy.

The true value of pj, reported to be 0.9167± 
0.00005 Mg/m3, was determined by Ginnings and 
Corruccini (1947) using a Bunsen ice calorimeter; p i 
may also be deduced from measurements of the unit­
cell parameters. Figure 1 shows Pj versus 1/7" from 
data obtained by Lonsdale (1958), Eisenberg and 
Kauzmann (1969) and Hobbs (1974). The value of 
Pj at 0°C given by Lonsdale (0.9164 Mg/m3) is in 
good agreement with that given by Ginnings and 
Corruccini. However, for lower temperatures, pj 
values given by LaPiaca and Post (1960) and Brill 
and Tippe (1967) are probably more reliable.

Thermal expansion
The coefficient of linear expansion yQ is a measure 

of the fractional change in length per unit change in 
temperature. Butkovich (1957) reported that the 
orientation of the C-axis, the type of ice (whether 
single or polycrystalline), and the grain size do not 
appreciably affect the values of the coefficient of 
linear expansion. Ice can be considered as an iso­
tropic material with respect to thermal expansion in 
the temperature range 0° to -30°C. Figure 2 shows 
some of the most reliable measurements of 7 C for 
bulk ice; it can be seen that y% increases with increas­
ing temperature. According to Jakob and Erk (1928)

and Dantl (1962), 7 C is negative at about 70 K and 
lower. Hamblin (Powell 1958) reported that 7 C values 
measured in a direction parallel to the C-axis are about 
1.8% and 10% greater than those in a direction perpen­
dicular to the C-axis at 273.1 and 73.1 K , respectively.

Figure 2. Coefficient o f  linear expansion o f ice at 
atmospheric pressure. Points represent the data o f  
Jakob and Erk (1928), Powell (1958), Butkovich 
(1959) and Danti (1962). Samples consisted o f  poly­
crystals, single crystals and single crystals parallel and 
perpendicular to the C-axis. (The data o f  Danti are 
taken from his graph and therefore may introduce a 
slight error.)
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Figure 3. Coefficient o f linear expansion o f ice de­
duced from measurements o f the temperature de­
pendence o f the unit-cell parameters.

Dantl found that D20  ice has a slightly higher value 
for 7C throughout the temperature range studied. His 
7C values at 240, 260 and 270 K are believed to be in 
error. For temperatures T  greater than 80 K, the dati 
can be represented by

7g x 106 = -11.7582 + 0.2424 T  (1)

with a relatively higher correlation coefficient 0 of 
0.9736. Therefore, for engineering applications, it 
is quite adequate to compute y z from this expression, 
which is applicable in the temperature range from 80 
to 273.1 K.

In Figure 2 the data points of Powell were calcu­
lated from two expressions:

7ex 106 = 56.5 + 0.250 0 (2)

for measurements in a direction parallel to the C-axis 
and

7Cx 106 = 55.5 + 0.248 0 (3)

for measurements in a direction perpendicular to the 
C-axis, where 0 is temperature in degrees Celsius.

Values for 7 fi can also be deduced from measure­
ments of the temperature dependence of the unit-cell 
parameters of ice. Values obtained this way may be 
more significant that those obtained by direct diato-

Figure 4. Coefficient o f cubic expansion o f ice as a 
function o f temperature at atmospheric pressure. 
o —deduced by Lead better (1965) from linear expan­
sion coefficients given by Powell (1958) and Dantl 
(1962). • —deduced by Eisen berg and Kauzmann 
(1969) from measurements o f the unit-cell parameters 
made by LaPlaca and Post (1960). A - deduced by 
Hobbs (1974) from measurements o f the unit-cell 
parameters made by Brill and Tippe (1967).

metric measurements because they depend only on 
changes in the dimensions of the lattice and not on the 
texture of the ice. However, X-ray measurements may 
involve larger errors than bulk measurements at low 
temperatures. Figure 3 shows 7 C values deduced from 
the temperature dependence of the unit-cell parameters 
from more recent measurements made by LaPlaca and 
Post (1960) and Brill and Tippe (1967). The magni­
tude and general trend seem to be in fair agreement 
with the measurements for bulk ice shown in Figure 
2. For temperatures from 80 to 273 K, yQ can be 
fairly represented by 7 cx 106 = -15.48+0.28 T. There 
seems to be no consistent difference between 7 C values 
parallel and perpendicular to the C-axis in either set of 
measurements. The irregular pattern of the data by 
LaPlaca and Post must be due to a lack of sample 
purity or to experimental conditions. For practical 
purposes, eq 1 can be used to calculate y% values for 
temperatures ranging from 80 to 273 K.

Figure 4 shows the coefficient of volumetric ex­
pansion 7 C of ice as a function of temperature at at­
mospheric pressure. The data were taken from Hobbs 
(1974) [omitting two yc values at mean temperatures 
of 163.1 and 183.1 K from measurements of the unit­
cell parameters made by Brill and Tippe (1967)]. A 
linear regression analysis results in an expression of

3



7cx 106 = -24.86+0.67 T with a fairly high correla­
tion coefficient o f 0.94. Though there are some dis­
crepancies among the three sets o f data, the general 
trend o f yc variation with temperature is evident: It 
increases with temperature and it becomes negative 
when t  is lower than about 50 K.

Compressibility
The compressibility o f a substance is defined as 

the change in its volume per unit change in hydro­
static pressure. If  the change takes place at constant 
temperature, it is called isothermal compressibility 
cot . I f  the change takes place without energy exchange 
with the surroundings, it is called the adiabatic com­
pressibility coa.

As usual, the limited data available did not agree. 
Bridgman (1912) reported an cot of 37x 10"6 /bar 
at 273.1 K and one atmosphere; this value is about 
three times higher than the value 12x 10“6 at 70°C 
and 300 atmospheres reported by Richard and Spey- 
ers (1914). Bridgman later revised his values as 
shown in Figure 5, which indicates the effect o f T 
on cov  With the exception o f cot at 273 K, the five 
points given by him lie close to a line on a semi-log 
plot. The values for cot can be given by cot x 106 = 
14.20 exp (0.0018 7").

Values for coa obtained by Leadbetter (1965) 
based on the elastic constant measurements o f ice by 
Bass et al. (1957) and Zarembovitch and Kahane 
(1964) are also shown in Figure 5 and can be expressed 
as coax 106 = 10.55 exp (0.0007 T). Leadbetter indi­
cated that the uncertainty in oua values for tempera­
tures below -30°C is probably less than 10%. For tem­
peratures above -30°C, coa values are accurate to about 
5%. Dantl (1969) also presented coa values based on 
measurements o f the elastic constant and provided the 
following expression: 

coax106 -11 .94

(1 +1.653x 10-3 0+3.12x 10’ 6 d2) (4)

where ooa is in bar-1 and 6 is in degrees Celsius. A 
few points from this expression are also shown in the 
figure. Note that Dantl’s ooa values are much lower 
than Leadbetter’s values and that they decrease 
sharply as temperatures decrease. According to 
Dantl’s data, o?a becomes negative around 120 K.
On the other hand, Leadbetter found that the varia­
tion o f coa with T was very slight. This discrepancy 
must be due to a variety o f factors, for example, the 
conditions o f the experiment and the origin, age and 
purity o f the sample.

Figure 5. Isothermal and adiabatic compressibility o f 
ice. ts—data o f  Bridgman (Richard and Speyers 1914). 
o—deduced by Leadbetter (1965) from elastic con­
stants measured by Bass et ai. (1957) and Zarembo­
vitch and Kahane (1964). • —data from Dantl (1969).

DENSITY CHANGES IN SNOW 

Compaction
The compaction o f snow layers can be seen graph­

ically in seasonal snow layer depth profiles obtained 
during several investigations (Bader et al. 1939). Ko- 
jima(1967) and Yosida (1963) presented quantitative 
expressions for density change due to compaction. 
Based on many observations o f the change in depth 
o f various layers (with no change in water equivalent), 
the following relation between snow density and over­
burden weight of snow was established:

where ps is the snow density (Mg/m3), t  is the time 
(hr), W$ is the weight o f the snow above the layer for 
which the density change is being computed and is 
expressed in water equivalent (m), and r? is the viscos­
ity coefficient o f snow (nvhr) and is a constant for a 
given density, temperature, and snow type. Kojima 
indicated that 77 and p s can be expressed by

r? = i?c exp(C2ps) (6)



where rjc is the value o f r? when ps = 0, and C2 is a 
constant to be determined. If eq 5 and 6 are com­
bined and C | = t?'1 , eq 5 becomes

¿ ^ r  = C1M',exp(-C2ps). (7)

Kojimareported C1 values o f 2.6-9.0/rrvhr and C2 
values o f 21 m3/Mg. Equation 7 accurately described 
the data o f Koj ima except for the cases o f low-density 
snow layers, wind-packed snow, and depth-hoar lay­
ers. For low-density and wind-packed layered snow, 
the density due to compaction increased at a higher 
rate than that predicted using the q  and C2 values 
obtained for ordinary snow. However, for depth- 
hoar layered snow, the density increase was at a 
much lower rate.

Based on his observations and work in polar regions, 
Mellor (1964) claimed that the value o f q  varied with 
snow temperature and type. He provided the follow­
ing relation o f rje (at 0°C) to r?0 (at 0°C):

Yosida (1955) and were found to be temperature- 
dependent. Yosida reported that the rate o f increase 
in grain diameter at -20°C is about 60% o f that at 
-6°C. The effect o f settling on density change was 
found to be important only in the early stages after 
snowfall. Gunn (1965) indicated that layers o f new 
snow settled at about 1% per hour immediately after 
snowfall; he found this rate to be independent over the 
density range from 0.05 to 0.15 Mg/m3. Destructive 
metamorphism was found to be a slow process where 
ps was higher than 0.25 Mg/m3.

There is no established mathematical expression 
describing density changes due to destructive meta­
morphism. Anderson (1976), using the same reason­
ing as that given in relating the density increase due 
to compaction, hypothesized the following relation:

} -  J f  = C3 exp[-C4(T0-T )] (10)

tor ps < pd and

Vg _ f A T0 'T 
vq '  expr / ?  T-T0

(8)
1 d f>S 

Ps d f
= C3 exp[-C4(T0-T )]  exp[-46(ps-p d)]

where T and 70 are the absolute temperatures in K 
that correspond to 6° and 0°C, respectively. A is 
the activation energy (~ 104 cal/mol) and R is the 
universal gas constant (~  2 cal/mol K). For tempera­
tures normally experienced in areas with seasonal 
snow cover, the value o f AI(RTT^) can be taken as 
0.08/K (if 7q = 273 K and T = 253 K). Thus, to in­
clude the effect of temperature on the density change 
due to compaction, eq 7 can be rewritten as

( 11)

for ps > pd. C3 is the fractional settling rate (hr-1) at 
0°C for ps < pd, C4 is a settling parameter (K"1), pd 
is the density below which the settling rate for snow 
equals C3, and 46 is an empirical dimensional con­
stant (m3/Mg) necessary to lower the settling by a 
factor of 100 when ps-p d = 0.1 Mg/m3 [that is, 
exp (-46x 0.1) = exp (-4.6) ^  1 /1 00].

1
- - r -  =  q  W s exp(-C2ps) exp[-0.08(7*0-7”)]
P«. ® t

(9 )

where q  is now the fractional increase in density 
(m~1 hr"1 ) at 0°C and p s = 0.

Destructive metamorphism
Under equilibrium temperature conditions, water 

molecules move on the snow crystals by the processes 
o f sublimation and condensation in order to decrease 
the surface free energy. Freshly fallen snow crystals 
have a very high ratio o f surface area to mass. The 
water molecule migration process (called destructive 
metamorphism) changes these sharp-edged crystals 
into aggregates of smooth grains that are rounded, 
oblong or irregular. As a result, the snow settles and 
increases in density. These phenomena have been ob­
served and photographed by Bader et al. (1939) and

Constructive metamorphism
Constructive metamorphism is the process o f vapor 

transfer within the snow cover due to the temperature 
gradient. Vapor is removed from one crystal by sub­
limation and deposited on another by condensation. 
The change in density with respect to time is

aPs _ 3C
a t m a t (12)

where m is the net sublimation (the net amount of 
vapor that undergoes a phase change) and dC/dt is 
the rate o f change o f saturated vapor concentration 
in the void space o f snow. When the effective d iffu ­
sion coefficient o f water vapor De varies with snow 
depth, the net sublimation can be expressed as

m = D e
a 2c 
a z1

+ dDe ac
az dz

ac 
a t (13)

5



where z  is one of the coordinates in the direction of 
diffusion.

For water-vapor-saturated porous media such as 
snow, the value of vapor concentration C  is solely a 
function of temperature; that is, C  = f(T )  disregarding 
the surface energy effect. Substituting eq 13 into eq 
1 2  yields

3£s
31 Def

3 z2

3D 37-
+t ' j r k +D*f

(14)

where / ' and / "  are the first and second partial deriva­
tives of vapor concentration with respect to tempera­
ture (dC/dT and 32 C/37~2). If D e is assumed to be 
solely a function of temperature for a given depth 
[that is, 3De/3z can be replaced by (3De/37“)(37'/3z)], 
eq 14 becomes

(15)

high-density, wet snow with nearly spherical grains, 
the rate of increase in density should be similar to that 
for dry snow. For fresh, low-density snow, it seems 
reasonable to expect that the presence of liquid water 
will accelerate destructive metamorphism, thus in­
creasing the settling rate.

R E G E LA T IO N

The change in equilibrium melting temperature 
d T  due to a small change in hydrostatic pressure dp 
is expressed thermodynamically as

dp
(16)

where v and s are volume and entropy, respectively, of 
a unit mass of material, and subscripts C and s refer to 
liquid and solid, respectively. Equation 16 can be re­
written as

dT„
L f

dp = - A  dp (17)

For a prolonged thermal gradient near the bottom 
of the snow cover, constructive metamorphism leads 
to the formation of depth hoar. Kojima (1967) re­
ported that well-established depth-hoar layers com­
pact at a greatly reduced rate. DeQuervain (1973) 
also indicated that layers in a state of advanced con­
structive metamorphism usually do not settle unless 
there is structural collapse.

Melt metamorphism
Melt metamorphism is the change in snow struc­

ture due to melt-freeze cycles and the change in crys­
tals due to the presence of liquid water. In general, 
melting decreases the depth of snow cover, and all or 
a portion of the melt-water may be retained and may 
refreeze, causing an increase in the ice content of the 
snow cover. A  melt-refreeze cycle increases the den­
sity of the affected portion of the snow cover by sev­
eral percent. Wakahama (1968) reported that the 
grain size increased at a faster rate as the amount of 
water increased, but the density (initial p s = 0.39 
Mg/m3) did not change unless the snow was subject­
ed to a load. Colbeck (1973) studied the problem 
theoretically and arrived at essentially the same con­
clusions about grain growth and density change.
Both Wakahama and Colbeck indicated that when 
water saturation is high, the rate of compaction should 
increase. Flowever, these conditions normally do not 
occur in a snow cover except over impermeable ice 
layers or at the ice/snow interface. Therefore, for

where Z.f is latent heat of fusion and is defined as 
7“m(sc~ ss). For ice, i/$ > i/c ; therefore, Tm decreases 
with increasing hydrostatic pressure.

The first theoretical value of A -  0.00745°C/bar 
was calculated by Thomson (1849), and Thomson’s 
brother (1850) verified experimentally that 7"m is 
lowered by pressure. The modern accepted experi­
mental value of A (0.00738°C/bar) was obtained by 
Moser (1929). However, for a high pressure form of 
ice, 1/fi > vs\ consequently, 7^ increases with increas­
ing pressure. It should also be noted that under hydro­
static tension, ice should be able to exist at tempera­
tures well above 0°C, but this has never been verified 
experimentally.

The melting point is also changed by non-hydrostatic 
stress. The phase equilibrium of a solid under non- 
hydrostatic stress was examined theoretically by Gibbs 
(1877). He reported that the stress component to be 
used to determine dTm is the stress normal to the inter­
face. On the other hand, Verhoogen (1951) indicated 
that the relevant stress is the mean stress in the solid. 
Kamb (1961) analyzed these two theories as well as 
the most recent ones and concluded that only that of 
Gibbs has any validity.

The lowering of Tm of ice by pressure has been 
used to explain the phenomenon of regelation, a term 
which was introduced by Tyndall and Huxley (1857) 
to account for Faraday’s observation that two pieces 
of ice adhere when they are brought into contact. 
However, regelation has been used more specifically
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to describe the passage of a weighted object through 
a block of ice, the compaction of wet snow (Colbeck 
1979), and the movement of glaciers over obstacles 
on their bed (Weertman 1957). Bottomley (1872) 
conducted the first experiments on the passage of a 
wire through ice and explained his observations in 
terms of Thomson’s pressure-melting theory. The 
pressure of the wire causes the ice underneath it to 
melt and form a thin layer of water, which moves 
around the upper side of the wire, where it freezes.
As the ice continues to melt and refreeze, the wire 
passes through it. Bottomley concluded that the 
wire has to be a sufficiently good thermal conductor 
to permit the latent heat of fusion needed to melt the 
ice to be conducted through the wire from its upper 
side, where the water is refreezing and liberating heat. 
Turpin and Warrington (1884) repeated Bottomley’s 
experiment using wires of different thermal conduc­
tivities. They reported that the speed of a wire pass­
ing through the ice increased with the wire conduc­
tivity, but they failed to develop a simple relation be­
tween the two parameters. Kojima (1954) conducted 
a number of experiments on regelation using six wires 
with differences in either thermal conductivity or 
wire diameter.* He concluded, as had Bottomley 
(1872) and Turpin and Warrington (1884), that the 
most important factor for regelation is the thermal 
conductivity of the wire material and that the contri­
bution due to heat conducted along the wire from 
the surrounding air was insignificant. He also indi­
cated that the viscoelastic property of ice did not play 
a role in the process.

Recently a series of theoretical and experimental 
papers have been published on this subject. This in­
cludes the work of Telford and Turner (1963), Nye 
(1967,1973), Frank (1967), Townsend and Vickery 
(1967), Nunn and Rowell (1967), Hahne and Grigull 
(1969, 1972), and Drake and Shreve (1973). Nye 
(1967) analyzed the problem theoretically, taking 
into account the flow of heat and water. He showed 
that if the thermal resistance of the object was the 
dominant factor, then the wire speed depends on the 
volume of the object and not its shape. He further 
reported that for a sphere or a cylindrical wire, the 
thickness of the water film is always uniform and 
does not depend on the speed.

Nye developed the following equation:

v= FA X/Z.f i/pj (18)

* In one case a combination of high- and low-conductivity 
wires was used. This was done by fastening linen cords on 
both ends of a copper wire of 10-cm length and laying it 
over the ice pillar so that the copper wire part was on its top.

where v is the steady state velocity, F  is the load on 
the object, Lf is the latent heat of fusion, pj is the ice 
density, X is the thermal conductivity of the object of 
volume l/, and A is a constant defined in eq 17. Figure 
6 summarizes the results of Nye’s calculations. Metal 
wires used in laboratory experiments usually fall into 
regions 1A or 2A; poor conductors are usually in 1B 
or 1C. The water film was found to be very thin; for 
example, for a steel wire 1 mm in diameter, the theory 
predicts a water film thickness of 0.36 pm.

To test Nye’s theoretical treatment, Townsend and 
Vickery (1967) conducted experiments with spheres 
and discs that were about 10 mm in diameter and made 
of different materials. Their results for spheres are 
shown in Figure 6. The observed velocities were up to 
three times lower than those predicted by eq 18. How­
ever, for discs, the velocities varied from nearly equal 
to the predicted value to 33 times slower. Nunn and 
Rowell (1967), using cylindrical specimens, showed 
similar discrepancies for metallic wires (by a factor of 
up to 18) but found reasonable agreement with the 
theory when testing insulated wires.

Frank (1967) speculated on the effect of water-film 
stability on the rate of penetration of the object. For 
high-thermal-conductivity objects, the freezing surface 
at the rear of the object is likely to be unstable, caus­
ing the water to separate from it in an extended wake 
and resulting in slower penetration than the theory 
predicts. For objects with low thermal conductivity, 
there would be instability in the forward melting sur­
face. However, Frank believed it would not produce 
any significant deviations from Nye’s theory.

These studies were all conducted when the ice was 
nearly at its melting point. The only significant study 
relating the effect of ice temperature on the speed of 
wire passage is reported by Telford and Turner (1963). 
In their experiment, a steel wire 0.45 mm in diameter 
was hung across a block of ice. The results are shown 
in Figure 7. The velocity increased by a factor of 10 
as the temperature increased from -3.5° to -0.7°C.
As the temperature increased to -0 .5°C , the velocity 
increased discontinuous^ by a factor of 200. This 
steep jump was attributed to the onset of pressure 
melting, since the load on the wire lowered the melting 
point by about 0.5°C. The much lower velocities at 
temperatures well below -0 .5°C  could not have been 
due to pressure melting. Telford and Turner attempt­
ed to deduce the wire motion mechanism at lower 
temperatures by considering the flow of a thin New­
tonian shear layer of viscous fluid around the wire.
By assuming that the fluid acts as a liquid-like layer 
(Fletcher 1962,1968), the velocity v may be shown 
to be related to the thickness h and viscosity r? of 
this layer by
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Figure 6. Theoretical and experimental data on the passage o f an object through 
ice by regelation. (Adapted from Nye 1967.) In case 1, Tr «  7 ; in case 2, Tr ~ 7 ; 
and in case 3, Tr »  1, where Tr is the ratio o f the temperature drop across the water to that 
across the object, in subdivision A the heat flows mainly through the object and the water, 
in B the heat is divided between this path and that through the ice, and in C the heat flows 
mainly through the ice. The controlling thermal resistance (ice, object or water) is noted in 
parentheses. Dotted boundaries refer to spherical objects; all others refer to cylindrical ob­
jects. O— Townsend and Vickery's experiments on spheres. • — Nunn and Rowell’s experi­
ments on wires.

Figure 7. Velocity o f a steel wire moving through ice as a 
function o f temperature. (Adapted from Telford and Tur­
ner 1963.) The wire diameter was 0.45 mm, the load was 2. 7  kg, 
and the thickness o f ice was 10 mm. A t the temperature marked 
by the arrow, the velocity changed discontinuously by a factor o f 
200 due to pressure melting. The theoretical values are based on 
Fletcher’s liquid-like layer theory.
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— i- ) 32mì \af (19)

wherQ F  is the force per unit o f wire length and a is 
the wire radius. The variation o f velocity with tem­
perature might therefore be explained by a change in 
layer thickness with temperature, as predicted by 
Fletcher (1962). The computed values o f v (from 
eq 19), with the thickness and temperature relation­
ship given by Fletcher and the value o f 77 appropriate 
to supercooled water, are also shown in Figure 7; 
they compare fairly well with the experimental data.

Equation 19 predicts a linear relation between v 
and F , but the experimental results showed that v is 
proportional to F3, which is similar to the finding by 
Glen (1952) for the creep o f polycrystalline ice. How­
ever, there are great differences between the values of 
activation energy in Glen’s results and those shown in 
the figure. Therefore, the wire motion is not due to a 
simple creep phenomenon.

Hahne and Grigull (1972) considered the regelation 
of ice as a heat conduction problem. In developing 
their model, they reasoned that while the wire is mov­
ing through the ice, the layer immediately below the 
wire melts. The water containing the heat o f fusion 
is pressed around the wire to the upper side, where it 
refreezes and releases the heat o f fusion, which is 
then conducted to the melting zone. For wires of 
thermal conductivity greater than that o f ice, say 
copper, most o f the heat is conducted through the 
wire. For materials such as Perlon, however, the heat 
is predominantly conducted through the ice around 
the wire. The wire surface temperature should be 
lowest on the leading side and highest on the trailing 
side. Hahne and Grigull solved the heat conduction 
equation using simplified boundary conditions for 
the linear case (when the heat flows through the wire) 
and the sinusoidal case (when heat flows around the 
wire). The penetration rate was found to be

T(vr vJ

W f 2
a p 0

|______J_______ +—L
l(a/Xm)+(S/Xw)+(Z5n/Xn) ff/Xj

(20)

for the linear thermal boundary and

Tivr v w)

*(>iL 2
AP0

_________ Ï___________ + J _
(a /X j+ (0 /X wJ+(26n/Xn) a / \

(21)

for the sinusoidal case, where i/j and î w are the specific

volumes of ice and water, respectively, AF0 is the maxi­
mum excess pressure, 6 is the water layer thickness, ¿>n 
is the thickness o f the /7 th coating, and X, Xw, Xj and Xn 
are the thermal conductivity o f the wire material, the 
water, the ice and the/7th coating, respectively.

To calculate the penetration rate, the value o f ô is 
needed. By considering the problem as one o f one­
dimensional creeping flow, values o f 8 can be approxi­
mated by trial and error from

/ cut P\ 

Pw
W f 2

(aAm)+(Se/Xw)+(2Sn/Xn)

(22)

for the linear case and

2
6 pa /cm Pi \ Pj^-f

Ô2 \«s Pw ' 7t,r ,w>

| '/|(<7/Xm )+(5s/Xw)+(ZSn/Xn) + )

(23)

for the sinusoidal case.
Hahne and Grigull used bare copper and Perlon 

wires in their study because the wires differed greatly 
in thermal conductivity. The results can be repre­
sented by a log-log plot o f v versus a (Fig. 8 ). For 
copper wire, the dependence o f v on a is nearly identi­
cal for all the three pressure values used [v (cz)"0,5] . 
This is also true for Perlon wire, except that the de«- 
pendence o f 1/ on a is stronger [v oc (a) ’ 0-1 ]. Cross 
plots o f v versus pressure p for any specific value o f 
a used in the study revealed the pressure dependence 
o f v a  (p ) 1,333 for both copper and Perlon wires (Fig. 
9). Consequently the penetration rate can be repre­
sented by

v =  1.674 (p ) 1 3 3 3  (<7)-°-50 (24)

for copper and

v = 0.114(p)1-333 ( fl)-1-0  (25)

for Perlon wires.
The effect o f thermal conductivity Xmon v was 

evaluated for a wire radius o f 0.25 mm and pressures 
o f 5, 7.5 and 10 bars by estimating values o f v for 
Perlon wire from eq 25. It can be expressed as
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Figure 8, Penetration velocity as a function o f  v/ire 
radius and material under various pressures. ( From  
data obtained by Hahne and Griguii 1972.)

i/ = 0.0624(p )1’333 ( X j 0*284. (26)

The general relationships among v,p , a and Xm can 
not be established due to the lack of data. However, 
the data available show that when a > 0.25 mm, the 
dependence of v on Xm is greater; when a < 0.25 mm, 
the influence of Xm on v is reduced.

The assumption and verification of the existence 
of a very thin film of water on the surface of ice and 
in any gap between ice and any other material 
(Fletcher 1962, Nakamura 1966) led Weyl (1951) to 
hypothesize that different penetration speeds for dif­
ferent materials should be explained on the basis of 
film thickness rather than thermal conductivity. To 
examine Weyl’s reasoning, Hahne and Grigull (1972) 
compared the speed of silver-plated copper and iron 
wires with that of silver wire. If the surface material 
and the ice would dominate the regelation phenome­
non, the velocities of bare silver and silver-plated cop­
per wires should be the same for corresponding di­
ameters and pressures. They found, however, that 
the same difference in velocity of bare copper and 
iron wires is maintained for the corresponding silver- 
plated wires, indicating that the dominant factor in 
wire movement through ice is thermal conductivity. 
When varnish-coated copper and iron wires are tested, 
the value of v and the difference in v between them 
are drastically reduced, indicating the significant ef­
fect of wire thermal conductivity on penetration rate.

Figure 9. Penetration velocity as functions o f  pres­
sure and wire radius for two materials that d iffer in 
thermal conductivities.

When Perlon wire (which has a thermal conductivity 
of the same order of magnitude as the varnish-coated 
copper and iron wires) is tested, v is also of the same 
order of magnitude. From these studies, it is clearly 
demonstrated that the conductivity of the wire mate­
rial and not the formation of a thin water layer be­
tween the wire and ice affects the wire speed.

a (mm)

Figure 10. Ratio o f  theoretical to experimental pene­
tration velocities o f  Hahne and Griguii (7972) as func­
tions o f  pressure, wire radius and material.
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Table 1. Comparison of theoretical and experimental results on penetration velocity v.

Nye/Nunn and Rowell__________ Nye/Hahne and Grigull

Material
\  a P vtn venr 

(W/m K) ( 10~3 m) (bar) (mm/hr) (mm/hr) vtn!venr
vtQ

(mm/hr)
vts

(mm/hr) vtn!vts vt J venr

Silver 419 0.25 3.48 120.24 7.20 17 46.60 56.41 2.13 6.47
Copper 385 0.36 2.41 63.72 3.60 18 24.53 30.00 2.12 6.81

0.55 3.83 74.88 6.12 12 29.24 35.94 2.08 4.78
0.79 5.42 83.52 7.20 12 31.81 39.06 2.64 4.42
0.79 1.81 27.79 2.52 11 10.62 13.04 2.13 4.21

Carbon- 50 0.19 8.42 110.88 9.00 12 44.48 55.99 1.98 4.94
Steel/lron 0.23 3.62 39.96 4.68 8.6 16.05 20.24 1.97 3.42

0.23 7.24 79.92 9.72 8.2 32.10 40.48 1.97 3.30
0.28 5.96 54.72 5.76 9.5 22.05 27.84 1.96 3.82
0.28 2.98 27.40 2.88 9.5 11.02 13.92 1.96 3.82

Nylon/Perlon 0.25 0.21 7.65 5.04 5.04 1.0 2.04 2.60 1.94 0.41
0.43 3.72 1.20 1.73 0.69 0.48 0.62 1.94 0.28
0.43 5.58 1.80 2.59 0.69 0.73 0.93 1.94 0.28

i/tn = theoretical velocity by Nye (1967).
i/enr = experimental velocity by Nunn and Rowell (1967).
i/tg = theoretical velocity by Hahne and Grigull (1972) with linear boundary.
wts = theoretical velocity by Hahne and Grigull (1972) with sinusoidal boundary.

Figure 10 shows the comparison between experi­
mental results with bare wires and Hahne and Grigull’s 
theoretical results based on the simplified heat con­
duction model. For copper wire, the ratio vJvQ (where 
i/t and vQ are the theoretical and experimental pene­
tration velocities, respectively) reaches a value o f about 
2.70 at 5.0 bars and a = 0.25 mm with sinusoidal boun­
dary conditions. This ratio increases as pressure de­
creases. However, it decreases as the wire radius in­
creases for both the linear and sinusoidal cases. For 
Perlon wires, the ratio for the sinusoidal case is about 
33% o f the experimental value, and the effect o f pres­
sure can be considered to be insignificant.

Table 1 shows some comparisons o f the theoretical 
results o f Nye (1967) and Hahne and Grigull (1972) 
and the experimental work of Nunn and Rowell (1967). 
As indicated by the ratio ytn/i/ ts, the results o f Hahne 
and Grigull using a sinusoidal thermal boundary (i/ts) 
are about half o f those predicted by Nye (i/tn ) for 
both metallic and insulated wires with great d iffer­
ences in thermal conductivity. Furthermore, the ratio 
o f (the penetration rate based on a linear thermal 
boundary) to i/enr (the experimental results o f Nunn 
and Rowell) is about 2.5 times lower than the ratio 
i/tn/^enr f ° r metaWc wires. (This ratio is not shown 
in the table.) Because o f the different parameters 
used in Hahne and Grigull’s experiment, a direct com­
parison with Nunn and Rowell’s work can not be 
made. However, the results of Hahne and Grigull 
were consistently much higher. Since contamination, 
either on the wire surface or in the ice, decreases the 
wire speed, higher speeds are considered to be more

reliable. The great discrepancies shown by can
be attributed to too high values o f i/tn and too low 
values of vem.

The most recent and most comprehensive theoreti­
cal and experimental work on pressure melting and re­
gelation o f ice is that o f Drake and Shreve (1973).
They controlled temperature more precisely, used 
much smaller driving stresses, and watched the process 
and its after-effects more closely than did other investi­
gators. The wires were made o f copper, chromel and 
nylon (polyamide) with diameters ranging from 0.12 
to 0.50 mm and Xm’s ranging from 0.245 to 388 W/m 
K. They reported that the wire speed increases non- 
linearly at all but the lowest driving stresses; at a stress 
of about 1 bar it jumps sharply but continuously and 
reversibly by an amount ranging from six-fold for ny­
lon wires to 60-fold for copper wires (Fig. 11). Above 
this transition the speeds o f copper wires are as low as 
one-eighth o f those predicted by Nye, although the 
speeds o f nylon and chromel are about the same as 
predicted. Below the transition the speeds o f all wires 
are much less than predicted.

All wire speeds are significantly reduced by air bub­
bles in the ice. Drake and Shreve noticed that the 
wires leave a trace below the transition that consists 
o f widely scattered, generally tiny bubbles o f unfrozen 
water; above the transition the trace grades from nu­
merous bubbles o f water and vapor for highly conduc­
tive wires to a central flat layer o f water for poorly 
conductive ones.

Measurements of the fractional volume of water in 
the trace show that above the transition, heat flows to
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Figure 17. Penetration velocities as functions o f wire mate­
ria/, wire radius and stress level. Dots represent the data o f  
Drake and Shreve (1973). The solid lines represent the the­
oretical work o f Nye (7967).

the moving wire from the surrounding ice. The non­
linearity and low speed below the transition are due 
to the accumulation of solutes in the water layer 
around the wire; they concentrate toward the rear, 
lowering the freezing temperature and reducing the 
heat flow toward the melting front. The transition 
occurs when the temperature at the rear reaches the 
triple point corresponding to the existing local pres­
sure. With increasing driving stress, the mean pressure 
around the wire increases and the mean temperature 
decreases, causing heat to flow toward the wire and 
causing formation of the trace, which carries away 
the solutes. For highly conductive wires the trace is 
bubbly because of the Frank instability (1967) of the 
freezing surface, which permits fingers of water and 
vapor to grow until pinched off by surface tension. 
For poorly conductive wires the non-linearity above 
the transition is mainly due to the additional melting 
at the front of the wire and the change in pressure dis­
tribution around the wire associated with the forma­
tion of the trace. For highly conductive wires the 
non-linearity and the unexpected slowness above the

transition are mainly due to the supercooling required 
for a finite rate of freezing, which, like the presence of 
dissolved solutes, lowers the freezing temperature at 
the rear of the wire.

The work of Tozuka et al. (1979) is the most re­
cent addition to the literature on this subject. In their 
experiment, copper and nylon wires of various radii 
were used and experiments using both commercial ice 
and ice doped with hydrogen fluoride were conducted 
in a room maintained at 1°C; the pressure ranged from 
2 to 15 bars. They observed a sharp jump in copper 
wire speed (about 1.5 times) at pressures around 5 bars. 
[This is in sharp contrast to the 60-fold jump in wire 
speed at pressures around 1 bar reported by Drake and 
Shreve (1973)J In the case of nylon wires, however, 
the transition pressure has never been observed. (Drake 
and Shreve observed a 6-fold increase in speed for Per- 
lon wires.)

The findings of Tozuka et al. concerning the effect 
of wire radius on speed were essentially consistent with 
the data obtained by Hahne and Grigull (1972). For 
low thermal conductivity wires (nylon and Perlon), the
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wire speeds were found to be inversely proportional 
to the wire radius (1 la); for copper wires, the speeds 
were proportional to (1 /a)0*3 [versus (1 /a)0*5 derived 
from Hahne and GrigulPs data].

Tozuka et al. also studied the effect of thermal 
conductivity on wire speed. A t pressures below the 
transition point (such as 2.4 bars), measured speeds 
per unit pressure (v/p) were much smaller than those 
expected from the theory (Nye 1967) and had a larger 
scatter regardless o f thermal conductivity. For pres­
sures greater than the transition (such as 8 bars), 
speeds o f medium thermal conductivity wires such 
as chromel and constantan were about the same as 
predicted from the theory. But in the case o f copper 
wire, with its much higher thermal conductivity value, 
the theoretical wire speed was three times larger than 
the measured one. On the other hand, the measured 
speed for nylon wires, which are poor conductors, 
was greater than the theoretical one by about 40%.

The effects of impurity on wire speed were also 
reported by Tozuka et al. They indicated that the 
abrupt change in wire speed at the transition was 
mainly caused by impurities in the ice. They demon­
strated this by measuring the temperature difference 
between the top and bottom sides o f the wire.

Regardless o f the uncertainties, however, the ex­
perimental and theoretical results as a whole clearly 
demonstrate that the long-accepted explanation of 
the motion of wires through ice as a process of pres­
sure melting and regelation is basically correct. The 
large qualitative and quantitative discrepancies be­
tween the simple theory and the experimental obser­
vations are largely due to the neglect o f the dissolved 
solutes in the water layer around the wire, o f the for­
mation o f a trace behind the wire, whose geometry 
is governed by the Frank instability, and o f the super­
cooling required to freeze water at a finite rate.

THERMAL PROPERTIES OF SNOW 
AND FRESH WATER ICE

Heat capacity of snow and ice
The heat capacity is defined as the heat required 

for a unit o f mass to rise one unit of temperature at 
constant pressure cp or at constant volume cv. Mathe­
matically it is defined as

cp (27)

where H  and U are enthalpy and internal energy per 
unit mass, respectively. Since the heat needed to 
warm up the air and vapor in the interstices is very 
small, the heat capacity of dry snow and ice are essen­

tially equal. The value o f cv can be computed from 

Cp by

c p - c v
7c VT 
wT

(28)

where V is the volume of ice, yc is the coefficient o f 
volumetric expansion, and co is the compressibility.
The value o f cv is about 3% less than cp at the melting 
point, and the difference (cp - c v) decreases with de­
creasing temperature.

The values o f the heat capacities of ice made in the 
early twentieth century were reviewed and summarized 
by Dickinson and Osborne (1915) and Dorsey (1940). 
Giauque and Stout (1936), in an extensive study, re­
ported cp values o f hexagonal ice over temperatures 
ranging from 15 to 273 K. Flubacher et al. (1960) 
obtained cp values for hexagonal ice in the range from 
2 to 27 K. Sugisaki et al. (1968) also made extensive 
measurements o f cp for amorphous, cubic and hexa­
gonal ice between 20 and 250 K. Most recently, Ash­
worth (1972), using a new technique, determined 
values of cp between 50 and 270 K. Figure 12 shows 
all the experimental data on cp for hexagonal and 
cubic ice. The data were divided into three or four 
temperature ranges [i.e., 15-50 K, 50-95 K (or 15-95 
K), 95-150 K and > 150 K] and subjected to linear 
regression analysis. For each range cp is expressed as 
cp = A + BT. The constants A and B and the correla­
tion coefficients 0 are listed in Table 2.

The data from all the investigations are consistent, 
as the high values o f 0 indicate. The effect o f axis- 
orientation is within the experimental error. The 
linear representation o f the data can be used to deter­
mine the value of cp at any specific temperature. For 
example, cp at the normal melting point is 37.7 J/mol 
K, about one-half of the heat capacity of liquid water. 
The value o f cp decreases with decreasing T  and, as 
expected, approaches zero at 0 K.

Anderson (1976) gives an expression for Cj as

Cj = 1.6738 + 0.1327 T (29)

Table 2. Constants A and B in c p =A+BT and0.

Temp.
range
( K ) A B 0

15-50 -2.2171 0.2094 0.9920
50-95 -0.0035 0.1597 0.9892

15-95 -0.8994 0.1710 0.9931
95-150 2.2841 0.1350 0.9817

> 150 2.7442 0.1282 0.9737

13



T (K)

Figure 12. Specific heat o f ice. Points represent the data of Giauque and 
Stout (1936), Fiubacheretal. (1960), Sugisaki et ai. (1968) and Ashworth 
(1972). Sam pies consisted of cubic and hexagonal ice.

where q  is the specific heat of ice. At 193 K, eq 29 
shows Cj to be 0.2 J/mol K less than the value com­
puted from the highest temperature range in Table 2. 
At 273 K, however, it shows Cj to be 0.055 J/mol K 
higher.

Latent heat
The change in enthalpy dH associated with a change 

in phase of a material at constant pressure p is given by

dH = dU+pdV (30)

where dU and dV  are the changes in internal energy 
and volume per unit mass of material, respectively.
The latent heat of fusion of ice Lf is defined as the 
change in enthalpy when a unit mass of ice is con­
verted isothermally and reversibly into liquid water. 
Because the tevmpdV is rather small in comparison

to other terms, Lf is nearly equal to the change in in­
ternal energy. Measurements of Lf made prior to 1925 
have been reviewed by Smith (1925) and those up to 
1940 by Dorsey (1940). Many early measurements are 
in error because the effect of impurities in ice was not 
taken into account properly. The most reliable value 
for Lf at 0°C and standard atmospheric pressure is 33.5 
kj/kg, reported by Rossini et al. (1952). The value of 
Lf decreases linearly with decreasing temperature down 
to about -10°C and then decreases at a lower rate as 
the temperature decreases further (Fig. 13).

The latent heat of sublimation of ice L s represents 
the enthalpy change when a unit mass of ice is trans­
formed isothermally and reversibly into water vapor 
at standard atmospheric pressure and at the ice-liquid- 
vapor triple point (273.16 K). Rossini et al. reported 
a value of 2838 kj/kg. It is interesting that L f repre­
sents only about 12% of L$; therefore, only about 12%
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Figure 13. Latent heat o f  ice as a function o f  
temperature.

Figure 14. Thermal conductivity o f  ice as a function 
o f  temperature. Points represent the data o f  Jakob 
and Erk (1929), Powell (1958), Ratcliffe (1962), Dean 
and Timmerhaus (1963), Wolfe and Thieme (1964), 
Dillard and Timmerhaus (1966) and Ashworth (1972).

of the hydrogen bonds must break when ice melts. 
According to the data available, the value of L s re­
mains practically constant (2838 kj/kg) between 
213.16 and 272.16 K .

Thermal conductivity of ice
Thermal conductivity X of a solid material is de­

fined as the proportionality constant in the one­
dimensional form of Fourier’s law of heat conduction; 
that is,

(31)

where q is the heat flux in the direction normal to the 
temperature gradient dd¡dz. Thermal conductivity 
usually depends on temperature 6 and to a lesser ex­
tent on ice crystallographic orientation. Early work 
on thermal conductivity of ice Xj was reviewed by 
Powell (1958). A t temperatures near 273 K , the value 
of Xj is about 2.2 W/m K , about four times as 
large as the Xw of water at 273 K . The increase in Xj 
with decreasing temperature reported by Lee (1905) 
was found to be much less rapid than that obtained by 
Jakob and Erk (1929). Landauer and Plumb (1956) 
reported no significant differences in the thermal con­
ductivity coefficients of laboratory-grown single crys­
tals, glacial single crystals and polycrystalline commer­
cial ice, although the Xj along the C-axis of the single 
crystals appeared to be about 5% greater than that nor­
mal to the C-axis.

Figure 14 summarizes the recent measurements of 
Xj of polycrystalline ice by Ratcliffe (1962, taken from 
his best-fitted lines), Dillard and Timmerhaus (1966), 
Ashworth (1972), Dean and Timmerhaus (1963), and 
Wolfe and Thieme (1964). The relatively old data of 
Jakob and Erk (1929) and Powell (1958) are also 
shown. (For clarity of presentation, only one notation 
is used.) It seems as if each investigator provided data 
under a different set of techniques and conditions 
(such as sample purity, sample preparation, and meth­
ods for obtaining X). Since there was a lack of data 
between 150 and 195 K , the data were divided at that 
gap. Regression analyses were made based on the 
expression

Xj - a  exp(&r). (32)

Table 3 shows the values of a, b and 0. The values 
for the whole temperature range had the highest correla­
tion coefficient. Therefore, for practical purposes, it is 
suggested that one use

Xj = 9.828 exp(-0.0057 T) (33)

to compute the values of Xj. The scattering of data is
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Table 3. Values of a, b and 0 from the 
regression analysis.

Temperature
(K)__________ a________ b_______ 0

<150 12.285 -0.0076 0.7970
>195 6.727 -0.0041 0.5962
all T 9.828 -0.0057 0.9313

mostly due to differences in sample purity and prepara­
tion, adjustment of heat loss to the surroundings, and 
reproducibility of experimental data.

Thermal conductivity of snow
The heat transfer processes in snow are much more 

complicated than in ice. In snow, heat is transferred 
by conduction through the interconnected ice grains, 
by conduction, convection and radiation across the 
air space, and by the movement of vapor by sublima­
tion and condensation. In the determination of ther­
mal conductivity, a temperature gradient is imposed, 
which subsequently establishes a vapor gradient and 
thus causes vapor diffusion. Therefore, the thermal 
conductivity of snow includes vapor diffusion. Ther­
mal conductivity is expressed as effective thermal 
conductivity Xse (Yen 1962) to account for all the 
processes occurring in the snowpack. However, be­
cause of the low temperatures, the effect of radiation 
transfer is usually not significant.

Numerous investigators have reported the values of 
Xse, and without exception, they empirically correlated 
their results with snow density (Fig. 15) as the sole par­
ameter. The temperature ranges under which the data 
were obtained were usually not defined. The scatter­
ing of data is due to the snow conditions (such as aging 
and grain size distribution) and to the effects of vapor 
diffusion. Another factor may be the method used to 
determine Xse. The transient method is more accurate 
than the steady-state technique, because in the transi­
ent method the heat loss to the surroundings during 
the experiment need not be assessed. Regardless of 
the difference in results from each investigator, all 
data can be reasonably represented by

Xse =2.22362 (ps)1-885 (34)

with a 0 of 0.8614. It gives a reasonable value of Xj 
when extrapolated but a lower value of Xa when 

P s ^  Pa-
Pitman and Zuckerman (1967) appear to be the 

only investigators who systematically considered the 
effect of temperature on Xse. They used vapor-grown 
ice crystals and conducted Xse measurements at -5°, 
-27°, and -88° C and at densities ranging from 0.1 to

0.6 Mg/m3. A  semi-log plot (Fig. 16) of their data 
(taken from their graph) shows three parallel straight 
lines (with the exception of p s = 0.1 Mg/m3 at -88°C). 
Since the thermal conductivity of air at 0°C is about 
0.024 W/m K, the straight line extrapolation to ps 
= 0.1 is probably a better representation of their data 
at -88°C. To determine the effect of temperature on 
Xse from these data, a plot of Xse (taken from Figure 
16 at any specific ps) versus 6 was made and Xse was 
found to be proportional to 0; that is, Xse oc exp 
(0.00880). Finally, the data of Pitman and Zucker­
man can be represented [except for the data for the 
lowest density (ps = 0.1)] by

Xse = 0.0688 exp(O.OO880+4.6682 ps) (35)

as shown in Figure 17. Also shown in the figure are a 
few points taken from the work of Yen (1965) and 
Schwerdtfeger (1963a). F o r p ^ p ;  = 0.917 and

Ps ( M g / m 3)

Figure 15. Effective thermal conductivity 
of snow as a function of density. Points 
are derived from the equations of Abel’s (1893), 
\se = 2.8451 (os ) 2; Jansson (1901), \se = 0.0209 
+ 0.7950(ps) 2+2.5104(ps)\- Devaux (1933),
\se = 0.0293+2.9288(ps) 2; Kondrateva (1945), 
\se = 3.5564(ps) 2; Bracht (1949), Xse = 2.0502 
(ps) 2; Su/akvelidze (7959), \ $e = 0.5105ps;
Yen (1962), \se = 3.2217(ps) 2.
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Figure 7 6. Effective thermal conductivity o f  snow Figure 7 7. Effect o f  temperature and snow density on
as functions o f snow density and temperature. effective thermal conductivity o f  snow.

6 = 0°C, the value of Xse Xj = 4.98 W/m K, which is 
about 2.3 times the accepted ice value o f 2.2 W/m K 
at 0°C. For ps -* pa and 0 = 0°C, Xse -* Xa = 0.0688 
W/m K, which is about 2.8 times the value for air at 
0°C (Xa = 0.0247 W/m K).

Schwerdtfeger (1963a), using Maxwell’s work on 
the electrical conductivity o f heterogeneous media, 
derived theoretical expressions for Xse. For dense 
snow, Xse is equivalent to Xja and is given as

where 5 is a constant related to porosity by 77 = 1/(1 +s)3 
When 77 is given, the value o f 5 can be calculated. When 
ps = 0.4 and 77 = 0.536, 5  is found to be 0.212. From 
eq 38, Xsa = 0.7023 W/m K for snow at 0°C. For very 
low density snow, a model is developed consisting o f a 
suspension o f small spherical particles in air not in con­
tact with each other; the model is identical to eq 36 
except for the interchange o f Xj and Xa, and the substi­
tution o f Xsa for Xja.

2Xi+Xa-2 r?(X,-Xa) x 
ia 2X, + Xa-i?(Xi-X a) 1

(36)

where Xja is the thermal conductivity of dense snow 
or ice containing air bubbles, and 77 is the porosity and 
is related to p . and ps by 77 = 1 -(P j/p s). Because Xa 
«  Xj and 77 = 1 — (Pj/ps), eq 36 becomes

3P|“Ps '
(37)

For low density snow (down to 0.15 Mg/m3)

(2+s)s

(1 + 5)2
(38)

Effective thermal diffusivity
For a homogeneous, isotropic medium with con­

stant physical properties, the effective thermal diffusiv­
ity ae is the coefficient of the general heat conduction 
in Cartesian coordinates; that is,

bT = lb 2T + (¿T  + <^T 

^  \9x2 9y2 9z2 j

(39)

where ae is defined as Xe/p scj and psCj is the volumetric 
specific heat o f the medium.

Sulakvelidze (1959) formulated a heat transfer equa­
tion for porous media containing saturated vapor, water 
or ice at temperatures close to those o f phase transition. 
This was done by including an evaporation-condensation
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term in Fourier’s heat conduction equation. For the 
case o f one-dimensional heat transfer, the heat con­
duction equation becomes

can be considered to be constant. In one-dimensional 
steady diffusion processes, Fick’s law gives the mass 
flux m as

3T
dt

ô27~

dz2
q (40) -  n dC m = -  D —dz

(46)

where q is the intensity of sublimation of condensa­
tion (Mg/m3 ) and can be expressed in terms o f vapor 
concentration C by

Q =
d2C

dz2

dC
dt

(41)

where De is the effective water vapor diffusivity 
(m2/s). Substitution o f a prescribed function f(T) 
for C in eq 41 yields

q = D e
d2f

dz2 d t '
(42)

Equations 40 and 42 can be combined to give

d r  = 0 +De^ ( aeciPs)f) d2r
dt M  l+ (Ls/CjPs)f' \ dz2

(LsDe/ciPs) f "  , d7-a  

1 +(Z.s/CiPs) / '  \d z )
(43)

where / '  and / "  are first and second derivatives o f /  
with respect to T. Equation 43 describes the general 
processes o f heat transfer taking place in a moist por­
ous medium without including the effects of solar 
radiation or the changes in the amount o f liquid 
water within the snow medium. Since the values of 
Cjps are much greater than those of Lsf f, eq 43 can 
be reduced to

W :/|7\2
3i '  c\Ps 'd z2 c\Ps

When there is no vapor diffusion (Ls = 0), 
duces to the well-known Fourier equation

d r  d2r

(44)

eq 4 re-

(45)

Once the function /  is chosen, the temperature distri­
bution as a function o f time can be computed.

Heat transfer by water vapor 
diffusion in snow

The diffusion coefficient D for a binary system is 
a function o f temperature, pressure and composition, 
For low pressure gas mixtures or dilute solutions, D

where dC/dz is the concentration gradient in the d i­
rection o f diffusion.

Yosida (1950) was the first to study the effective 
diffusion coefficient De for water vapor diffusing 
through snow. He reported De values ranging from 
0.7 to 1 .Ox 10"4 m2/s, which is about four or five 
times larger than the diffusion coefficient D 0 for 
water vapor diffusing through air. When p s is in the 
range o f 0.08 to 0.5 Mg/m3, Dt values remain more or 
less constant. By maintaining the lower boundary tem­
perature higher than the upper one, he found that the 
effect o f natural convection is insignificant. To explain 
the fact that Dt > D0 , Yosida pointed out that ice 
grains do not act as mere obstacles to the diffusion of 
water vapor as sand grains do; they produce water 
vapor themselves, thereby facilitating the mass trans­
fer processes o f sublimation and condensation. The 
heat transfer due to molecular vapor diffusion can be 
written in a form similar to Fourier’s law of heat con­
duction:

(47)

where qy is the heat flux due to vapor diffusion and 
0T is the ratio o f water vapor density to temperature. 
The product /3jD eLs can be considered as Xv, the ther­
mal conductivity due to molecular diffusion. If  L$
= 2828.38 kj/kg , j3T = 0.39x 10~3 kg/m3 K and D e 
= 0.85x 10"4 m2/s, then Xv = 0.094 W/m K. There­
fore, the molecular vapor diffusion plays a significant 
role in the process o f heat transfer in low density snow.

Heat and vapor transfer with 
forced convection

The effects o f air flow through snow on Ae and De 
have been studied experimentally and theoretically 
and were reported in a series o f papers by Yen (1962, 
1963, 1965). For one-dimensional and steady-state 
cases, the governing equations for heat and vapor trans­
fer can be summarized as follows. For heat transfer,

dT g m wl s dPs d2r

Ca dz Mu dz e ^z 2 

and for vapor transfer,

dl^  + (R d.h \dJ l
dz2 D’edPJdz d t j  dz

= 0

=  0

(48)

(49)
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where ps is the saturation vapor pressure o f snow, ca 
is the heat capacity o f air, /?v is the gas law constant 
for water vapor, G is the air mass flow rate, and 
M are the molecular weights o f water and dry air, re­
spectively, 7r is the total pressure o f the system, 7^ 
is the mean temperature of the system, Xg and D'e are 
the effective thermal conductivity and diffusivity 
under forced convective flow, respectively, and is 
defined as j(3 = GRyTmM w/MnDfe. To calculate Xg, 
only the steady-state temperature distribution is need­
ed; to obtain D ’e , the density distribution before and 
after the experiment and the steady-state temperature 
distribution are required.

For unconsolidated snow with a density between 
0.376 and 0.472 Mg/m3, the value o f Xg can be ex­
pressed by Xg = Xe + 24.27G (Yen 1962), where Xe = 0.586 
W/m K and G varies from 10x10“3 to 40x10-3 kg/m2s. 
The value of 0.586 for Xe is consistent with the data re­
ported by Kondrateva (1945). The value o f D ’e can be 
represented by D'e = 3.016x10“3 (G+0.456x10~3)1;/2 
when G = 0 and D'e -> De = 0.65x1CT4 m2/s. As indi­
cated in the previous section, Yosida (1950), using a 
completely different approach, reported a value of 
0.85x10"4 m2/s for De. The differences may be par­
tially due to the lower temperature in Yen’s experiment.

For naturally compacted snow (Yen 1965), the fo l­
lowing correlations for Xg and D'e are valid for ps rang­
ing from 0.50 to 0.59 Mg/m3 and G varying from 5x 
10"3 to 32x10-3 kg/m2s.

Xg = 3.22(ps)2+25.1G (50)

and

D'e = 0.65x10"4 +0.051 3(p s)3-20(G)°-615
(51)

where Xg and D'e are expressed in W/m K and m2/s, 
respectively. When no air is flowing, Xg reduces to 
Xe, which is 3.22(ps)2, and D'e becomes De, which is 
0.65x10"4 m2/s. Both values are in agreement with 
experimental results (Yen 1962, 1963).

These results show that air flow has a considerable 
effect on the values o f X'e and D'e o f both unconsoli­
dated and naturally compacted snow. The increase in 
thermal conductivity and vapor diffusivity due to air 
flow is responsible for the small variations in snow 
density and temperature gradient near the surface 
layers of a snow cover.

THERMAL PROPERTIES OF SEA ICE

Compared with fresh-water ice, whose physical 
properties are well known, sea ice is a relatively com­
plex substance whose transformation to a completely

solid mixture o f pure ice and solid salts is attained 
only at low temperatures so extreme that they are 
rarely encountered in nature. The physical properties 
o f sea ice thus depend strongly on salinity, temperature 
and age. Many o f these properties are still not fu lly  un­
derstood, particularly those important for the under­
standing o f natural ice covers. In fact it appears to be 
safer to rely on theoretical values for thermal conduc­
tiv ity  and specific heat, because precise measurement 
of these properties has always posed considerable d if­
ficulty. In the development o f a suitable sea-ice model 
for calculating these quantities, an interesting progres­
sive complexity appears: To calculate specific heat, 
knowledge o f the composition alone is sufficient. Cal­
culations of density also require consideration o f air 
bubble content. Finally, to calculate the thermal con­
ductivity, information on the spatial distribution o f all 
components is necessary.

Specific heat o f sea ice
When sea water is cooled to its freezing point, pure 

ice crystals form. As freezing progresses, pockets o f 
brine are cut off, so that the sea ice is composed o f 
pure ice, brine, solid salt crystals and air bubbles 
(which have a negligible effect on the specific heat).
The equilibrium salt concentration o f the brine trapped 
in the ice depends on its temperature. When the sea ice 
temperature increases, the brine is diluted to a new 
equilibrium concentration by the melting o f pure ice 
at the ice/brine interface. The specific heat o f sea ice 
is the total o f the heat required to raise the sea ice con­
stituents (i.e. the pure ice and the brine) a unit o f tem­
perature and the heat associated with the phase change. 
The latter process leads to the fact that sea ice has an 
abnormally large specific heat.

Salinity is usually defined by oceanographers as the 
number o f grams of dissolved solids in one kilogram of 
solution. This also applies to sea ice, and the mass o f 
salt in grams per kilogram o f sea ice is usually quoted 
in parts per thousand (%o). Flowever, for convenience 
in deriving phase compositions o f sea ice, the units 
“ grams o f salt per gram of sea ice”  are often used.
Based on the work o f Malmgren (1927), it is believed 
that salinity is usually a good parameter in analyzing 
the thermal behavior of sea ice.

Specific heat o f  ice between the 
freezing point and -8.2° C

Within this temperature range, there is no signifi­
cant substitution o f ions in the ice lattice; thus, the 
brine in the interior cells has the same salt composition 
as the sea water from which the ice was formed. No 
precipitation o f salt occurs in this temperature range 
(Fig. 18), and the specific heat depends essentially on 
the relative extent of the phase change and the specific 
heat o f pure ice and the salt solution. The thermal
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Figure 18. Freezing point o f brine as a function o f 
fractional salt content. (A fter Schwerdtfeger 1963b.)

Figure 19. Specific heat o f sea ice as func­
tions o f temperature and salinity. (Modified 
from Ono 1966.)

capacity of salt in 4%o sea ice is on the order of 
3.3472 J/kg K and can be considered to be negligible. 
The effects of heat of crystallization (or dilution) 
can also be neglected based on data quoted by Lange 
and Forker (1952). Consequently the specific heat 
of sea ice csi can be written as

csi = - aZ- / - ^ + J - ( cw - c i ) + c i (52 )

where a  is the coefficient of the relation between 
fractional salt content of the brine 5 (in grams of salt 
per gram of water) and the temperature 0, o is the 
salinity of sea ice (grams of salt per gram of sea ice), 
and Cj and cw are the specific heat of pure ice and 
water, respectively. The relation between s and 6 is 
linear (Fig. 18), so 5 = a9 (a is the slope of 5 versus 0, 
a negative quantity).

Replacings in eq 52, Pounder (1965) and Schwerdt­
feger (1963b) both gave the expression

Csi = - ^  V ^ ( Cw - c i) + c i <53 )

in which the term acj has been omitted for the case 
of natural sea ice. Ono (1966) used a somewhat dif­
ferent approach and developed the following expression:

c,: = 0.505+0.00180+4311.5 —  -O.8a+O.2Oa0. 
51 02

(54)

The values of csj are shown in Figure 19. Since the 
contributions of the 4th and 5th terms are negligible, 
eq 54 reduces to

c,: = 0.505 + 0.00180+4311.5 — . (55)
51 02

Specific heat o f sea ice between 
-8 .2° and -2 3 °C

The continuous deposition of Na2S 04 • 10H2O 
takes place only within this temperature range (Fig. 
18). If the rate of deposition with temperature is lin­
ear, then the quantity of precipitation at any tempera­
ture can be calculated by extrapolating from the initial 
section of the phase graph. Therefore, in 1 gram of sea 
ice, there are w grams of water, ws grams of dissolved 
salt, wp grams of precipitated salt with which j3wp 
grams of water are combined in the crystals, where j3 
is the mass ratio of 10 H20  to Na2S 0 4 and equals 
1.27. Thus, in general, the mass of pure water in the 
unfrozen solution is
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where p is grams of precipitate (not including its water 
of crystallization).

The mass of pure ice is

™\ = (57)

The change in mass of unfrozen water w as fractional 
salt content 5 and associated precipitatep change is

amount of heat required to melt 1 gram of sea ice of 
salinity o and temperature 0. The value of ¿ sj is 
found by integrating eq 4 from 0 to 0m, where 0m is 
the temperature when the melting is completed and is 
computed from the relations: m { = 1 - a -  (a/s). When 
/77j = 0 (that is, when melting is complete) and when 
5 = a 0 m is substituted, 0m is 0m = a/a, after taking 
into account that o «  1. If higher order terms of o 
are neglected,

dw = -
o(ds+dp)

(s+p)2
(58) L si = 79.68 - 0.5050 -27.3o+4311.5 j

(The salinity a is a constant; only the redistribution of 
salt from liquid to solid or vice versa is of concern.) 
Figure 18 shows that

s + p - a d  and p = oc(6 + 8.2). (59)

Substituting s+p  = ad into eq 58 gives dw = -(o/ad2) 
dd. Therefore, the heat absorbed by a unit mass of 
sea ice for a temperature increase dd is

+ 0 .8 0 0 -O.OO902. (62)

The values of L Si from eq 62 are shown in Figure 20. 
For practical purposes, the fifth and sixth terms in 
the right side of eq 62 can be neglected, and it 
becomes

L si = 79.68-0.5050-27.3a+4311.51 . (63)

dq = Lfdw+ |l (1 + /3p)jc,</0

+ J ^ Cwrf9 + [ ^ ( 1+fl)j chrffl (60)

where ch is the specific heat of the precipitated 
hydrate.

The expression for specific heat of sea ice is ob­
tained by evaluating dq/dd of eq 60, substituting eq 
59 in the resulting expression and rearranging, and is 
expressed as

c si = “ ^ 2  Lf + ~aB (C w _ c i ) + (1 ~a )c i

(6D

by Schwerdtfeger and Pounder (1962). Since a ¡a 
< 1, (0+8.2/0) < 1, the terms of ]3Cj and (1 + j3)ch are 
of the order of 1, and o «  10"3, the last term and 
<7Cj can be neglected. Equation 61 reduces to the 
same form shown in eq 52. Values of csj for salinities 
ranging from 0 to 0.01 gram of salt per gram of sea 
ice and temperatures ranging from -2° to -22°C are 
shown in Figure 19.

Heat of fusion of sea ice when 
0° > 0 > -8.2°C

As sea ice has no fixed temperature for phase 
transition, the heat of fusion ¿ sj of sea ice is the

Density and thermal conductivity of sea ice
The thermal conductivity of sea ice is strongly de­

pendent on composition, that is, the density, salinity 
and temperature. Schwerdtfeger (1963b) showed that 
thermal conductivity is mainly determined by salinity 
at high temperature and by density at low temperatures. 
As with specific heat, it is simplest to consider ice in the

0 (°c)

Figure 20. Latent heat of fusion of sea ice 
as functions of temperature and salinity. 
(Modified from Ono 1966.)



temperature range between 0° and -8.2°C, below 
which the precipitation of Na2S04 *10H2O compli­
cates the analysis.

Composition and air bubble content 
of sea ice above -8.2° C

With o and s defined as before, the mass of unfro­
zen brine per unit mass of sea ice ism b = a/s+cr. The 
volume of brine is (a+a/s)/pw(1+5) = a/spw, and the 
volume of ice is (1 -a-a/sj/pj, where pw and pj are 
the densities of pure water and ice, respectively. The 
volumes o f brine and ice per unit volume of sea ice 
are

where psj is the density of sea ice. The volume of air 
per unit volume of sea ice is 6  (°C)

' P s i(spv
a 1 -a-a/s

Pi
(66)

If pw = 0.999 Mg/m3, pt = 0.917 Mg/m3, s = ad, and 
a = - 1 .82x 10 '2/°C, eq 66 reduces to

K  = i - p . t oSl\0.917
+ 4.98 a \

6 ) '
(67)

Figure 21 shows the air bubble content by volume of 
sea ice as functions of temperature, salinity and 
density.

Rewriting eq 66, replacings = ad, and neglecting 
the terms containing octd or os gives the sea ice density 
as

_ (1-Vi)pwPfi0 
'si o:̂ Pw — cr(pw — P j) (68)

Since the second term in the denominator is rather 
small, rewriting and substituting the values of pw , Pj 
and a changes eq 68 to

Psi = (1 - Ki)

Figure 21. Fractional air content (by volume) as a 
function o f temperature for sea ice o f different salini­
ties and densities.

if the air content is constant. While the density is tem­
perature-dependent, especially near the freezing point, 
the dependence diminishes considerably at lower 
temperatures.

Thermal conductivity model for sea ice
Langleben (1960) and others have shown sea ice 

to consist o f pure ice enclosing vertical cylinders of 
brine that are approximately elliptical in cross section 
and whose lengths, especially at higher temperatures, 
are large compared with their average diameters. Ander­
son (1958), on the other hand, preferred to calculate 
the thermal conductivity as if the brine pockets were 
spherical. This assumption may have greater validity 
at lower temperatures, when the small amount of 
brine plays a less significant role in determining the 
thermal conductivity. Based on Maxwell’s principle 
that sea ice consists of uniformly and randomly dis­
tributed spherical air bubbles, the thermal conduc­
tivity of bubble ice Xbj (Schwerdtfeger 1963b) is

0.917. (69) ^bi “
2Xi+Xa - 2 K 1(Xr Xa) 

2Xi+Xa+l/a(Xr Xa) X i' (70)

This equation shows thatpsi increases with salinity For a temperature range of 0° to -20°C, and taking the
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Figure 22. Density and thermal conductivity o f  
bubbly ice as a function o f  fractional air content.

Figure 23. Effective thermal conductivity o f  sea ice as 
a function o f temperature fo r various salinities and 
densities.

thermal conductivity of ice Xj to be 2.09 W/m K and 
the thermal conductivity o f air Xa to be 2.51 x10“2 
W/m K, eq 70 is used to calculate Xbj and is shown, 
along with the density o f bubbly fresh-water ice, in 
Figure 22.

If the sea ice consists o f parallel configurations of 
bubbly pure ice and enclosed brine, then the thermal 
conductivity of sea ice Xsj is

<71)

Thermal diffusivity of sea ice
Thermal diffusivity is the most directly observable 

thermal property, as it is directly related to the rate o f 
temperature change in a medium. It has been seen that 
the values o f csi, psi and Xsj are monotonic functions 
of the temperature; that is, as temperature increases, 
csi and psj also increase but Xsi decreases. The values 
o f ocSi = Xsj/p sjcsj are shown in Figure 24 as functions 
o f temperature and salinity. Note that the values of 
asj are not greatly affected by density changes as they 
are for freshwater ice.

where Xb is the thermal conductivity o f the brine, 
which is strongly dependent on the concentration 
and to a lesser extent on the temperature. If the 
change in thermal conductivity and fractional salt con­
tent is linear at constant temperature for s < 0.15, then 
on the basis of thermal conductivity measurements for 
NaCI and Na2S04 solutions given by Lange and Forker 
(1952), the value of Xb can be approximated by

Method of determining thermal diffusivity
In general, the equation for thermal diffusion is 

written as

30 = 30
CsiPsi d t 3z 3z Asi dz2 

where t  is time and z is the depth. Let

(73)

Xb = 0.4184(1.25+0.0300+0.0001402). (72)

Using Xb from this expression, Xj = 2.09 W/m K. The 
values of Xsj calculated from eq 71 are shown in Fig­
ure 23.

A ll the curves (that is, for all densities and salinities) 
exhibit asymptotic behavior. A t lower temperatures, 
the thermal conductivity o f low-salinity sea ice is equal 
to the value for fresh-water ice.

1 d \ j / 3 0 / 3 z \

^si ^ z v 2,6/dz2'

Equation 73 may then be rewritten

(74)

30 d20
3r ^ a s i3z2 '

(75)

Letting 0Z t be the temperature at depth z and time t,
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b. Graphic determination 
o f times l 7, 12 and t ? from  
actual temperature record.

Figure 24. Thermal d iffusivity o f  sea ice as 
a function o f  temperature fo r various salini­
ties. (The effect o f  density on as/ fo r a giv­
en salinity is insignificant.)

Figure 25. Determining thermal d iffusivity from temperature 
profiles. (A t t 2, the minimum temperature is dose to depth z; 
therefore, i t  may be assumed that f  = 0 at approximately t = t 2.

expressing 0Z+S>t, 0z_s>t,and Ozt+T in the Taylor 
series, and neglecting the higher order terms yields

^z,t+t "  £ (^z+s,t + 4^z,t + 0z-s,t)

bd _ s 2 b2Q 
~ T b t - 6  dz2 '

From eq 75 and 76,

5^  =  + i)  a sj]z,t

and

Z>t+T 6 ^z+s,t+4(9z,t + 0z-s,t

(76)

(77)

(78)

s2/6 t can be computed; it equals [(1 +/)asi] zt. I f /
= 0, the value o f as} can be determined immediately.
By eq 74, /  = 0 when b6/bz = 0, that is, when the tem­
perature is at the minimum or maximum value on the 
vertical profile. Figure 25a shows temperature profiles 
at times f ,  (0Z_S = 6Z), t 2(6z_s = 0Z+S) and t 3{0z = 9 Z+S). 
These times are easily determined from the temperatures 
as shown in Figure 25b. A t each o f times , t 2 and f 3, 
the values o f V6(0Z_S t + 4^z t + ^z+s t) can com" 
puted, and the corresponding values o f r-j, r2 and r3 
can be determined graphically. With the values of r s  
and a given distance increment (which may be varied), 
the corresponding values o f [(1 + /)a $|] z t can be ob­
tained using eq 77. However, at time t 2 the minimum 
temperature is closer to depth z; therefore, it may be 
assumed that /  = 0 at approximately t 2, and the value 
of [(1 +/ ) a Sj ] z t reduces to asi directly.

The quantity on the right side o f eq 78 can be com­
puted from the experimental data on the temperature 
changes at depth z-5, z and z+s, and thus the value 
of 6Z t+ r , from which the value o f r  can be determined 
graphically. Using the values o f 5 and r, the quantity

SUMMARY

This report dealt comprehensively with the thermal 
properties o f snow, ice and sea ice. Studies on ice 
density, thermal expansion and compressibility were
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reported. The available data were graphed to make 
them easier to use and to demonstrate the large dis­
crepancies in the compressibility data. The mechan­
isms and processes associated with snow density 
changes due to compaction and destructive, construc­
tive and melt metamorphism were discussed in detail. 
Equations describing these processes were derived.

Various theories of regelation were reviewed. Data 
on wire speed as functions of wire material (for ex­
ample, high and low thermal conductivity or metallic 
and non-metallic wires), wire radius, driving stress, 
temperature and contamination were analyzed. Tem­
perature measurements near the moving wire pro­
duced some insight into the processes of melting and 
refreezing. There is still no theory that incorporates 
all the factors that affect the rate of wire penetration 
into the ice.

The determination of heat capacity and latent heat 
of fusion of fresh-water ice was well documented. 
Slight variations in the reported heat capacity values 
were noted.

For values of thermal conductivity of ice and 
snow, however, a much greater scatter was observed. 
For ice, the large variation was believed to be due to 
the condition of the sample (such as the level of con­
tamination and the air bubble content). Reproducible 
data for snow were much more difficult to obtain. 
Because snow undergoes constant metamorphism as 
soon as it falls on the ground, its thermal conductiv­
ity is evidently not solely a function of its density. 
However, thermal conductivity of snow was usually 
reported in terms of density alone without any indi­
cation of age or temperature. (The temperature effect 
is considered to be small.) However, the age of the 
snow sample and the temperature level under which 
it had been stored apparently contributed to the dis­
persion and uncertainty in the data. A  brief review 
and discussion of the effect of air ventilation on ef­
fective thermal conductivity and vapor diffusivity 
were also presented.

Determining the thermal properties of sea ice is 
considerably more complicated than determining 
those of fresh-water ice. A ll the thermal properties, 
such as specific heat, latent heat and thermal conduc­
tivity, are functions of both temperature and salinity 
(in the temperature range 0°C  > 0 > -8 .2°C). In 
general, the specific heat is much higher than that of 
the fresh-water ice, especially when the temperature 
6 -> 0°C. This unusual phenomenon is caused by the 
fact that when the sea ice temperature rises, melting 
occurs, adding the latent heat of fusion to the sensible 
heat. The latent heat of fusion of sea ice is, however, 
generally lower than that of the fresh-water ice.

In the temperature range 0°C  > d > -8.2°C, ex­
pressions of the volumetric fraction of air and sea ice

density in terms of salinity and temperature were de­
rived. For temperatures lower than -8 .2°C  the analy­
sis becomes much more complex because of salt pre­
cipitation. By considering sea ice to be bubbly pure 
ice with brine pockets, and by assuming that the com­
ponents are arranged in parallel (like the connection in 
resistances), thermal conductivity of sea ice was ex­
pressed in terms of bubbly pure ice, brine, salinity, 
densities of sea ice and water, and temperature. Due 
to its complex composition and its transient behavior 
(the migration of brine or the aging effect), sea ice has 
not been studied extensively; only a handful of field 
studies have been reported. In the conclusion of this 
report, an innovative method for determining the ther­
mal diffusivity of sea ice was briefly described.
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