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The predictability of streamflow across the contiguous USA

Gap(s) Addressed

Enhanced suite of hydrologic predictions
spanning lead times of days to seasons and
consistent with the continuum of weather to
climate forecast products

More detailed meta-information describing
product skill, reliability and development

Sample Results

CONUS basin scale calibration

NSE
Calibration

Research Question(s)

1.  What streamflow forecast skill can be realized
through current methodological approaches
and operational datasets?

2. For different types of forecasts and user
needs, what method or data improvements are
most critical?

Collaborators/Schedule/Source of Support

* Reclamation, US Army Corps of Engineers
» Schedule:
 Fall 2013 -- Watershed simulation
datasets, Idealized Predictability
«  Summer 2014 — Improved days to
seasons forecasting, data assimilation,
Case studies
* Funding: Reclamation, US Army Corps of
Engineers; complemented by NOAA MAPP
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» Motivation, Questions & Goals
» System Development & Performance
= System development choices
= CONUS calibration results
 Predictability Results
= Regional variations in predictability
 Probabilistic Forcing
s CONUS gridded forcing dataset
= Example ensemble output
« Summary & Discussion
CAVEAT: The work described in this presentation is part of an exploratory research effort at

the National Center for Atmospheric Research, and does not represent the official product of
any state, local or federal agency. USE AT YOUR OWN RISK



Addressing Climate Change in Long-Term Water
Resources Planning and Management

User Needs for Improving Tools and Information

Executive Summary
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Monitoring and forecast products
reviewed in the ST-doc

NOAA/NWS forecast services for water resources applications

Also:
NRCS NWCC

water su pp|y River Forecasts
Floo Flood watch Hydrologic Outlooks (WFOs)
forecasts i — - vy
L1 WFOs) P w Water Supply Forecasts (RFCs)
L

Monitoring products:
USGS stream gauging
NRCS SNOTEL

NRCS snowcourse

NWS COOP observer

Peak Flow Forecasts (RFCs) ‘ |
Official Streamflow ‘Q'

Farecasts (RFCs) Ensemble Streamflow Prediction and Statistical Prediction (RFCs)

Weather Predictions
* Quantitative Precipitation (WFO, RFC,

ForecasiNgrod u:;t‘i:??{l\nw

RFC Precipitation analysis NCEP) s Pread G
- * Precipitation Analysis (RFC) * Historical data [RFCs)
* Temperature Forecasts * Climate Outlooks
[WFO, RFC, MCEP) * Climate Indices and Composites
* Other weather forecasts
{WFO, NCEP)
>
Hours Days Weeks Months Seasons

Lead Time / Resolution ->




ST doc needs

Category: Forecasting

General F1 Enhanced suite of hydrologic predictions spanning lead times of
days to seasons and consistent with the continuum of weather to
climate forecast products

Precipitation, supporting F2 More reliable guantitative precipitation forecasts (QPF) with lead

fine-resolution outlooks times of hours to days

F3 Improved precipitation forecasts for Jandfalling storms in coastal
areas

Streamflow, supporting fine- | F4 Enhanced streamflow predictions with lead times of hours to days,

resolution outlooks particularly during storm events

Streamflow, supporting Fo Enhanced streamflow predictions with lead times of days to weeks,

medium-resolution outlooks particularly during the snowmelt season

Runoff volume, supporting F6 Improved anticipation of runoff volumes with lead times of months to

coarse-resolution outlooks Seasons

Water level F7 Enhanced prediction products characterizing potential water levels
during storm events

Other hydroclimate F8 Multivariate suite of climate to hydrologic predictions that

comprehensively characterizes the state and evolution of basin
hydrologic conditions with lead times of days to seasons

Category: Understanding and Using Information Products in Water Management

Information on product Ul More detailed meta-information describing product skill, reliability,
development and and development

gualitative attributes

Information synthesis Uz Guidance on how to synthesize available hydroclimate information

relative to its collective applicability to water management situations



Are operational forecasts improving?

In the last 2 decades, there have been notable advances in capabilities
supporting hydrologic prediction. Are we harnessing those advances?
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Motivation

Science Questions & Approach

« QOverarching questions:
— For different types of forecasts and user needs, what method or data
improvements are most critical?

— What streamflow forecast skill can be realized through current
methodological approaches and operational datasets?

 To develop answers to above question:
— Implement a CONUS wide watershed simulation framework
— ldentify opportunities through CONUS wide predictability experiments
(eg quantifying initial condition vs. meteorological forcing importance)
— Develop CONUS wide probabilistic precipitation and temperature
datasets for a variety of purposes

— Quantify benefits of state-of-the-art forecasting methodologies to reduce

uncertainties

» data assimilation, weather and climate forecasting, ensemble methods, post-
processing, verification



SYSTEM DEVELOPMENT &
PERFORMANCE



Development & Performance

 Basin Selection

Data & Modeling System

— Used GAGES-II, Hydro-climatic data network (HCDN)-2009

— Forcing via Daymet (http://daymet.ornl.gov/)

— National Weather Service operational Snow-17 and Sacramento-

soil moisture accounting model (Snow-17/SAC)

— Shuffled complex evolution (SCE) global optimization routine

HCDN Basin Locations Precip (mmyr)
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http://daymet.ornl.gov/

Development & Performance

« Calibrated NSE varies Calibration Results
across CONUS ~670 basins

— Areas with seasonal snow,
frequent precipitation perform
best in terms of NSE

— High plains, desert SW
perform worse

NSE
alibration

Results are
preliminary and
subject to
change




Development & Performance

« NSE CDF for
calibration &
validation periods

— 90% of basins
>(0.55 NSE for

calibration period

» 15 yr calibration

* Remaining years for
validation

— No QC at this point
(besides data availability
requirements)

— Benchmark for all basins

CDF

Calibration Results
~670 basins
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Development & Performance

 Example summary:

VAN DUZEN R NR BRIDGEVILLE CA (11478500)

Calibration Results
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Development & Performance

Hydro-Climatic Performance Variations

 Fraction of objective function due to n data points

* 50% of gages have < 10 points contributing >33%
of objective function value

Calibration
1F ! ! —— —F—
0.9 +
+ i
0.8 _+ %
B sl :
£ 0.7 . :
e}
D 0.6 +
= +
: v
&% 0.5 ==
“6 o
soe |
8 0.3 e,
2 _E
0.2+ e
Results are 0.1} g
preliminary and 0 | L . ‘
1 10 100 1000

subject to
change # of Days (out of ~5500)



Development & Performance

Hydro-Climatic Performance Variations

° Ranked . ‘ fractions;lliiég?iro\rl]sAridity ‘ Swe (nlg%
Fractional Error ]
(100 largest error days) 06l 1| e
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1 F 4300

iIncreases with aridity

* Infrequent extreme
error events (skewed
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Development & Performance

Dataset Development Summary

Developed forcing data time series for ~670 CONUS
watersheds for basin (lump), hydrologic response unit
(HRUs from PRMS) and elevation bands

Acquired all available daily streamflow data from USGS

Forcing data and streamflow records now available

— Dataset is generating significant interest from various research
groups

Dataset and system description paper in preparation



PREDICTABILITY
EXPERIMENTS



Predictability

Opportunities for prediction

hydrological predictability
meteorological predictability
Hydrological Prediction: How
well can we estimate the

amount of water stored?
Accuracy in precipitation

CLOUDS &
- WATERVAPOR

estimates
TRANSPORT ».a " Fidelity of hydro model
T~ GF ATMOSPHERD) simulations
> - ;"-,’z Effectiveness of hydrologic data
EvAPORATION ' L assimilation methods
WITH FREE ATHOSPHERE) Meteorological predictability:

How well can we forecast the
weather and climate?

Opportunities: Which area
has most potential for
different applications?

Water Cycle (from NASA)



Predictability

Streamflow Prediction Challenges:
forecast future weather (hours to seasons)

«—Past Future ———

» |[Forecasts —=—

istorical Data

ol

SNOW-17 / SAC SNOW-17/ SAC
Historical Simulation A >
V

5 o\

General State of Practice

(near-period) use of numerical weather predictions; usage period varies by
streamflow forecasting office and weather prediction skill in their region

(far-period) climatology via Ensemble Streamflow Prediction (ESP), sometimes
conditioned by seasonal climate forecasts (for seasons and locations having skill)

aggregate to client needs (e.g., daily to seasonal information)




Seasonal volumes, KAF

Water Supply Forecasts

SNAKE - JACKSON LAKE AT DAM — 30y Hormal
Period APR to JUL -- Water Year 2013 »+ Obsérvation

— ESP10 10X

— ESP10 50X
1900 — ESP10 90
1roor Example flow volume prediction
1500 -
1300 - increasing watershed moisture

reduces prediction spread
1100
Runoff forecast for
this period
900
Wﬂ“" ‘ e~
T00
500
Observation -- 375 KAF
30yr Normal -- T65 KAF
EDD | | | | | | | | | | | |
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Most Recent Forecast for ESP10: 0873072013 Month Created: 10/25/2013 03:18 PDT




Predictability

Assessing Predictability

« ESP: Ensemble Streamflow Prediction
 NWS technique for model-based forecasting

ESP forecast * The model is run up to the
perfect retrospective ensemble of met data e forecaSt date W|th Observed
met data to generate to generate ensemble tt

perfect ICs forecast Weat h er
{/@ =
e o
Spinup  ICs  Forecast  The model’s simulation of

initial watershed conditions
assumed to be perfect

shows
effects of
climate
forecast
uncertainty

observed

 Future weather/climate is
unknown, “climatological” —
use an ensemble of
historical weather
sequences




An Earlier Approach
* run hindcasts (many years of forecasts in the past)

+ use ESP to measure benefit of known initial conditions (ICs),
unknown met forecast

- use "reverse-ESP" to measure the effect of known met forecast,
unknown future climate (Wood and Lettenmaier 2008, GRL)

ESP forecast

Predictability

Assessing predictability

perfect retrospective
met data to generate

ensemble of met data
to generate ensemble

“Reverse-ESP” forecast

ensemble of met data
to generate ensemble

perfect retrospective
met forecast

perfect ICs forecast
= k= -
w
Spin-up ICs Forecast
shows '
effects of
climate
forecast

uncertainty

observed

shows effects of
initial condition
uncertainty

of ICs
=l E 2 L
S
Spin-up ICs Forecast
]
RMSE

observed




+ ESP, 'reverse ESP' set the end-points

Predictability

Moving beyond the end points

- What do more realistic uncertainties show?
+ Expanded approach

- Scale IC and Met Forecast variance (uncertainty) between
» 0 = perfect knowledge
» 1= climatological uncertainty

- Assess flow forecast skill for all combinations (81) of scalings:

shows
effects of
climate
forecast
uncertainty

- 0,0.05,0.10,0.25,0.50, 0.75, 0.90, 0.95, 1.00

——
Spin-up

_""‘--,._,.-""'"
ICs Forecast

| w=0.5

; observed

-~ -

. e,
Spin-up ICs Forecast
— =] observed
w=0.5 23 )
RMSE




Predictability

Seasonal Variation in Predictor Importance
- Example: A snowmelt basin

Moisture Cycle for Crystal River, Colorado
800 - - - — : - :

F00 - SWE

GO0 SWE SWE

500 1
SWE

400

300 - yd e

200 /
100 | S e e MNP

water balance variable (mm)




no knowledge

variance weights
- IC=10
* Met Fest=10

Results are
preliminary and
subject to
change
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ESP knowledge

variance weights
- IC=0.0
e MetFcst=1.0

Results are
preliminary and
subject to
change
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ESP knowledge

variance weights
- IC=0.0
e MetFcst=1.0

Results are
preliminary and
subject to
change

scaled FCST flow scaled FCST flow scaled FCST flow

scaled FCST flow
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A Rain-Driven
Basin

- IC skill matters
most for 1 month
forecasts

+ For longer
forecasts, met
forecast skill

dominates €.231

Results are preliminary
and subject to change

Flow Forecast Skill Sensitivities

Assuming no skill in one source (model accuracy

for watershed states, or forecasts)...what are the
benefits of adding skill in the other source?

Streamflow Forecast Skill Given Varying Predictor Skill

002177000 CHATTOOGA RIVER NEAR CLAYTON GA
contours: black=climo, thin=0.75,0.50,0.25 climo, thick=perfect
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Flow Forecast Skill Sensitivities
A Snowmelt Basin

» Wide seasonal Assuming no skill in one source (model accuracy

YGP'GT'OHS n for watershed states, or forecasts)...what are the
influence of benefits of adding skill in the other source?
different skill
sources
Streamflow Forecast Skill Given Varying Predictor Skill
ying
. Cold/W d 009081600 CRYSTAL RIVER AB AVALANCHE CRK NEAR REDSTONE CO
0 arm an contours: black=climo, thin=0.75,0.50,0.25 climo, thick=perfect
Dry/Wet Init Condition  Met Forecast
pa’r’rer'ns are 1 month flow forecast 6 month flow forecast
clear 10 - 1.0
- Skill increases in o
meteorology <o oe
produce non- < |
linear skill 5 04 /1o
changes in flow 02 1 Aoz
0.0 ~{oo

Results are preliminary and ONDJFMAMI JIAS ONDJIJFMAMIJIAS
subject to change Init Month Init Manth
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Predictability

Assessing regional variations

Regional Streamflow Forecast Skill Dependence
1 month Mean Flow

Elasticity (% flow fcst skill / 9% predictor skill) versus Forecast Init. Month
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Results are preliminary and subject

- Based on ~420 watersheds, 30 year hindcasts change



Predictability

Assessing regional variations

Regional Streamflow Forecast Skill Dependence
3 month Mean Flow

Elasticity (% flow fcst skill / % predictor skill) versus Forecast Init. Month
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Results are preliminary and subject
to change

- Based on ~420 watersheds, 30 year hindcasts



Predictability

Assessing regional variations

Regional Streamflow Forecast Skill Dependence
6 month Mean Flow

Elasticity (% flow fcst skill / % predictor skill) versus Forecast Init. Month
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Predictability

Predictability Summary

* Predictability

— Laying groundwork for understanding influence of initial
condition and met. forecast uncertainties
— Future work will assess:
» short-range predictability variations

* how current state-of-the science strategies and datasets perform — actual
weather and climate forecasts, better forcings, physical models

— see example: http://www.ral.ucar.edu/staff/wood/weights/



PROBABILISTIC FORCING



Ensemble Forcing

Uncertainties in Model Inputs

Example over the Colorado Headwaters

Step 1:
Estimate probability of

precipitation (POP),
amount and error at each
grid cell

SyntheSize ensembles 0.00 1.0 5.0 10.0 20,0 1000 0.00 1.0 5.0 10.0 20.0 100.0 0.00 1.0 5.0 10.0 20.0 100.0
Precipitotion Amount (mm) — Ensemble 1 Precipitation Amount (mm) — Ensemble 2 Precipitotion Amount (mm) — Ensemble 3

from POP, amount & error

Gap: CONUS-domain ensemble

hyper-resolution forcing data corresponding :
(Precip, Temp, RH, wind, SW, LW) observations q

* Use all available data networks, remote
sensing products and NWP reanalyses

* Ensure consistency among variables and
realistic space-time variability

200 1.0 50 10,0 200 100.0

Clark & Slater, 2006 — JHM Precipitation Amount {mm)




Ensemble Forcing

Development of Serially Complete Station

Dataset

» Collected daily Global Historical Climate Network (GHCN)
and SNOTEL observations for 1980-2012

« All available stations in Canada, USA, Mexico
* Following Eischeid et al. (2000), processed stations with >10

years of data and nearby stations that have 10 years of
overlap with target station

Developed version 0 of serially complete time series of
precipitation and temperature

~11,000 stations with serially complete data
1980-2012



pixels

Ensemble Forcing

Example CONUS Precipitation
* 1/8° grid (~12 km)
Valid data over all land

Elevation (m)

bl §

Results are preliminary and subject to change
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Ensemble Forcing

Example CONUS Precuplfa’rnon

July 1-10 1993 F'remp (ENS ]

.+ July 1-10, 1993 example g el ] B
precipitation from three d | e

ensemble members e

Results are preliminary and subject to change



Example Basin Precip & Temperature

Ensemble Forcing

* Monthly time series for Crystal River, CO

« Basin mean values

* Maurer precipitation more extreme prior to ~1990

* Maurer generally coldest

Crystal River Monthly Precip

Crystal River Monthly Mean Temp
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Results are preliminary and subject to change




Ensemble Forcing

Example Application

Crystal River, CO
“Climatological” variation in SWE

« Each line is one WY (1980-2010)
Ensemble variation in SWE

« WY 1997 & 2002

Propagate uncertainty through model states

WY 1907 SWE WY 2002 SWE
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Results are preliminary and subject to change



Crystal River, CO

Estimate of ensemble 2200
spread relative to 2000-
climatology 1800

16001

Estimate of the -
weighting factor used in &
VESPA

Var [Ens]/Var [IC]
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For any given April 1st:
ensemble variance
~12% of ensemble
mean climatology
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Ensemble Forcing

Example Application
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Ensemble Forcing

Forecast Ensemble Generation

Beginning regression/analog generation of 0-14 day NWP
forcing data from GEFS

Example for Crystal River, CO

. . 3-Day Lead Precip (2000-2001 Winter)
RMSE, bias slightly S8 w . .
. - GEFS Mean
improved over GEFS 30 = Regression L
mean |

« RMSE: 4.7 vs 5.0 mm/day

 Bias: 1.13vs 0.78
Ongoing work:

 Determine error

characteristics
» (Generate ensembles

Precip (mm)

Results are preliminary and subject to change



Ensemble Forcing

Ensemble Summary

Version 0O of serially complete station data completed

Version 0 of CONUS 1/8° precipitation and temperature
ensemble completed

Ensemble forcing data can be applied to basins (or any
polygon) via grid-to-basin correspondence

Allows for propagation of forcing uncertainty through model
states

« Estimates of state uncertainty relative to climatology
0-14 day NWP ensemble generation underway



SUMMARY



Summary

Developed automated prediction framework
for use in modeling and forecasting research

Idealized Predictability Assessment laid
groundwork for understanding relative
importance of initial conditions and
meteorological forecasts

Developed probabilistic meteorological
forcings for use in data assimilation and
uncertainty quantification

The predictability of streamflow across the contiguous USA

Next Steps/Future Work

Key Lessons Learned

Automated objective calibration can be
effective and is a rich area for investigation
Controlling influences on forecast skill vary
widely by lead time, predictand and season
Ensemble forcings are feasible and can add
valuable perspective on hydrologic
uncertainties

Assess short term (fine resolution) idealized
predictability (briefly)

Implement and assess state of the art approaches
in weather and climate forecasts, data assimilation
and post-processing

Develop demonstration case studies oriented
toward water management

SWE climatology
(top) versus high and
low year SWE
ensembles (bottom)

WY 2002 SWE

SWE (mm)
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