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Disclaimer: Results in this presentation are 
preliminary and subject to change 
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Sensitivity of Hydrologic Impacts Assessment to Downscaling 
Methodology and Spatial Resolution 

Gap(s) Addressed 

Research Question(s) Collaborators/Schedule/Source of Support 

LT2.03 Information on the strengths and weaknesses of downscaled 
data and the downscaling methodologies used to develop these 
data (including both statistical and dynamical methods and 
associated approaches for climate model bias-correction).  

LT7.02  Uncertainty information on regional climate projections data, 
including uncertainties from choice of bias-correction and spatial 
downscaling methods. 

LT4.04 Guidance on strengths and weaknesses of available versions of 
spatially distributed hydrologic weather data that may be used for 
both watershed hydrologic model development (Step 4) and in 
climate model bias-correction (Step 2). 

LT4.01   Guidance on strengths and weaknesses of watershed 
hydrologic models/methods to support scoping decisions in 
planning 

1. How do methodological choices impact our 
assessment of climate change 

2. What implications do different downscaling 
method choices have?  

3. What affect do different hydrologic models 
have?  

4. Are these answers dependent on spatial 
scale? 

 

• Reclamation, USACE, University of 
Colorado, NCAR 

• 2012 – downscaling and hydrologic 
modeling 

• 2013 – modeling with downscaled data, 
analysis, and publication 

• Reclamation 1646, USACE, NSF 

Graphic 

Traditional statistical 
downscaling methods do 
not adequately represent 
extreme events, particularly 
spatial scaling relationships 

50yr 1-day extreme precipitation 

WRF 



Outline 
• Motivation, Questions & Goals 

• Analysis of downscaling methods 
▫ Multi-resolution WRF simulations for the Colorado Headwaters 
▫ Statistical downscaling based on GCM precipitation (CONUS scale) 

• Analysis of hydrologic models 
▫ How does the choice of hydrologic model affect portrayal of climate 

change impacts on water resources? 
▫ How do the methods used to configure/calibrate the model affect 

the portrayal of climate change impacts 

• Summary & Discussion 



A controversial question 
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Probability of 
Lake Mead 
“going dry” 



Reclamation’s Basin Studies 
17 Basin Studies funded so far 

– Objectives such as:  “Define current and future basin water supply and 
demands, with consideration of potential climate change impacts” 

 

http://www.usbr.gov/WaterSMART/bsp/studies.html 



Title 
text 

– text 

Agencies have supported development of online 
resources to assist and provide data for local 
basin studies and other users. 
 
such as this one: 
http://gdo-
dcp.ucllnl.org/downscaled_cmip_projections/ 



The West-Wide Climate Risk Assessment 
Streamflow projection ensembles developed as part of the Reclamation 

West-Wide Climate Risk Assessment   

http://gis.usbr.gov/Streamflow_Projections/ 

developed by running the 
meteorological projections 
from the archive through 
semi-calibrated VIC 
hydrology models 



Methodology to Incorporate Climate Change 
Information into Water Supply Projections 

Emissions 
Scenarios 

Climate 
Simulations 

Spatial/Temporal 
Downscaling 

Hydrologic 
Model 

Planning 
Model 

3+ 
Scenarios 

16+ 
GCMs 

100+ 
Projections 

100+ 
Traces 



Science questions 

• How does our portrayal of climate change impacts on 
hydrology depend on methodological choices 
 Downscaling methods 

 Dynamical 

 WRF (various resolutions) 

 Statistical 

 BCSDd, BCSDm, AR, BCCA, BCCAr 

 Hydrologic model structure/parameters 
Multiple models 

Multiple parameter estimation strategies 



Outline 
• Motivation, Questions & Goals 

• Analysis of downscaling methods 
▫ Multi-resolution WRF simulations for the Colorado Headwaters 
▫ Statistical downscaling based on GCM precipitation (CONUS scale) 

• Analysis of hydrologic models 
▫ How does the choice of hydrologic model affect portrayal of climate 

change impacts on water resources? 
▫ How do the methods used to configure/calibrate the model affect 

the portrayal of climate change impacts 
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Results - 1:  Downscaling method sensitivity  

Methods 
Bias Correction and Spatial Disaggregation 

– BCSDm : Monthly – GCM disaggregated to daily (Wood et al., 2004) 
– BCSDd : Direct to daily (Thrasher et al., 2012) 

Bias Corrected Constructed Analogue (Hidalgo et al., 2008) 
– BCCA : Analogs selected for all of CONUS 
– BCCAr : Analogs selected for regional sub-domains 

Asynchronous Regression (Stoner et al., 2012) 
– AR 

WRF (4km) Rasmussen et al. (under review) 
– Applied to a sub-domain 2001-2008 

Experiment 
– Retrospective test:  NCEP Reanalysis 1.9 degree -> Maurer 1/8th degree  

• Training: 1979-1999       Validation: 2001-2008 

– Evaluated range of hydrologically significant metrics at watershed scales: 
• bias, wet & dry day fractions, wet and dry spell lengths, extremes 

 



High Resolution Simulations of the Colorado 
Headwaters snowfall, snowpack and runoff 

1. Perform past climate simulations using high resolution WRF model 
– Grid spacing: 4 km.  
– Continuous eight years:  2000 – 2008 

2. Verified results of WRF integrations using NRCS SNOTEL data and showed that grid 
spacing of at least 6 km needed to faithfully reproduce the spatial pattern and amount of 
precipitation (Rasmussen et al. 2011, J. Climate).  

3.      Investigate enhancement of water cycle by  adding CCSM  10 year mean temperature 
and moisture perturbation from 50 year future A1B simulations from AR4 runs to NARR 
boundary conditions 

Full Domain 
Headwaters 

domain 

SNOTEL sites 



7-year average cool-season precipitation :  

1 October – 31 May 
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7-year average SWE on April 1st 

proj. updates 

36 km 4 km OBSERVATIONS 
900 

800 

700 

600 

500 

400 

300 

200 

 100 

 0 

SW
E 

(m
m

) 

12 km 



16 

7-year average SWE on June 1st 

36 km 4 km OBSERVATIONS 
900 

800 

700 

600 

500 

400 

300 

200 

 100 

 0 

SW
E 

(m
m

) 

12 km 



Mean difference in monthly precipitation between WRF and 
SNOTEL from 8-year climatology data 
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36 km 4 km 
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Statistical downscaling: Mean precipitation 

• Mean Precipitation is well represented in all but BCCA 
• All methods have some issues in late summer/fall 
• Most methods underestimate interannual variability, and have 

problems with seasonality 

Gutmann et al. (submitted) 



Statistical downscaling: Wet day fraction 

Gutmann et al. (submitted) 

a)BCCA 
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Test Domains: CONUS and Colorado Headwaters 

HUC = Hydrologic Unit Code : 8 digits, 4 digits, 2 digits  
HUC8 = smallest basins HUC2 = largest basins  
 



Statistical downscaling: Wet day fraction 

BCCA, BCSDd overestimate 
wet day fraction 

BCSDd and AR do not scale 
correctly (BCCA sort of) 

AR underestimates wet day 
fraction, esp. at coarser 
scales 

BCSDm slightly 
overestimates wet day 
fraction 

BCCAr is only slightly better 
than BCCA 

WRF is largely unbiased 

WRF 

Gutmann et al. (submitted) 



Statistical downscaling: Extreme events 

50yr 1-day extreme event 

BCCA, BCSDd underestimate 
Extreme events 

BCSDd, AR, and BCCA do 
not scale correctly 

AR overestimates extreme 
events, esp. at coarser 
scales 

BCSDm is largely unbiased 

BCCAr is substantially better 
than BCCA 

WRF is largely unbiased 

WRF 

Gutmann et al. (submitted) 

CLM 

Runoff 



Diurnal temp. range comparison (WY1980-08) 
 DJF JJA MAM SON 

Wet-day fraction  comparison (WY1980-08) 
DJF JJA MAM SON 

Impact of wet-day fraction cascades into other forcing variables 

°C 



Comparison of derived SW radiation 

 BCCA and BCSDd produces 
less SW radiation during 
summer compared to the 
others. 
 

 AR produces larger SW 
radiation in South-west 
during summer. 
 

 Difference in wet-day 
frequency may have more 
impact on SW radiation 
difference. 
 

 The magnitude of difference 
is larger in summer. 

Analysis:   1. Forcing   2. Water balance 

2/14/2014 
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CLM VIC 
Analysis:   1. Forcing   2. Water balance 



Ongoing research: More fully evaluate the 
continuum of downscaling options 

Statistical downscaling based on GCM outputs 
– BCSD, BCCA, AR 

Statistical downscaling based on GCM dynamics 
(water vapor, wind, convective potential, etc.) 
– Regression-based methods 
– Analog methods 

Stochastic methods to relate the space-time variability 
of downscaled fields (wet day frequency, extremes, 
etc.) to synoptic scale atmospheric predictors 

Dynamical downscaling using simple weather models 

Dynamical downscaling using state-of-the-art RCMs on
go
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Outline 
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climate change impacts on water resources? 
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• Summary & Discussion 



Subjectivity in model 
selection: 

• How does the choice of model 
equations impact simulations of 
hydrologic processes? 

• Missing processes, inappropriate 
parameterizations? 

Results - 2:  Hydrologic model sensitivity 

 

• Define a-priori values for model 
parameters 

• Decide what model parameters we 
adjust, if any 

• Decide what calibration strategy we 
implement, if any 
Choice of objective function 
Choice of forcing data and calibration 

period 

Model parameters 

 

• Decide which processes to include 
• Define parameterizations for 

individual processes 
• Define how individual processes 

combine to produce the system-scale 
response 

• Solve model equations 

Model structure 

Subjectivity in parameter 
identification: 

• How does our choice of model 
parameters impact simulations of 
hydrologic processes? 

• Compensatory effects of model 
parameters (right answers for the 
wrong reasons)? 

Climate change studies commonly involve several methodological choices that 
might impact the hydrologic sensitivities obtained. In particular: 
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Comparison of extreme runoff – Inter-model difference 

Low flow estimate is more dependent on models 

High flow  
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Considering model structures  

Differences in both model architecture 
and model parameterizations 
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How does hydrologic model choice affect the partitioning of precipitation into ET and runoff?  
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Results: impact of model choice & calibration 
 

 All models are run with WRF outputs at 4 km resolution. 
 Uncalibrated models: Climate change signal in Noah (↑ET and ↑Runoff) differs from 

the rest of models (↑ET and ↓Runoff). 
 Inter-model differences are larger than climate change, even after calibration process. 

Climate change signal Inter-model differences 

Uncalibrated model simulations Calibrated model simulations 
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Impact of parameters (VIC) Impact of model choice (after calibration) 

 Inter-parameter differences (VIC) have similar magnitudes to inter-model 
differences when we look at monthly runoff. 

Results: model structure vs. parameters  
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Impact of parameters (VIC) Impact of model choice (after calibration) 

 Uncertainty in monthly sensitivities of internal states and fluxes is still 
substantial, even when evaluating a limited set of model parameters. 

Results: model structure vs. parameters  



How does subjectivity in model choice and parameter identification affect climate change signal?  
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Results: model choice vs. parameter strategy 

 The choice of model 
structure, objective 
function and forcing 
dataset may impact the 
direction of climate 
change signal (i.e. from 
↓ET and ↑runoff to 
↑ET and ↑runoff). 
 

 Local optimal parameters 
have little impact on 
precipitation partitioning, 
and no impact on the 
direction of climate 
change signal. 



More generally: Understanding, characterizing, and 
reducing uncertainties in hydrologic models (next talk) 

• Motivation: The failure of Model Inter-comparison Projects 
 Any two models have a large number of differences, and it is difficult to attribute inter-model 

differences to specific modeling decisions 

• Approach 
 Carefully scrutinize all (subjective) decisions made in model development and application, and 

evaluate the impact of different options at different points in the modeling process 

• Guidance on characterizing hydrologic model uncertainty 
 Different process-based hydrological models can be considered small permutations from a master 

modeling template 
 Different modeling options can provide the wrong results for the same reasons 
 Inter-model differences are overwhelmed by uncertainty in model parameters 

 Characterizing hydrologic model uncertainty requires considering the different types of model error 
 Uncertainty in individual process parameterizations can be represented using an 

ensemble of model parameters. 
 There are cases where parameter uncertainty does not represent (i) scaling behavior; 

and (ii) uncertainty in some process representations (where different parameterizations 
have markedly different behavior) – in these cases, uncertainties can be represented 
using multi-physics and multi-architecture ensembles 

 There are also cases where different modeling approaches are missing the same 
processes and there is a residual amount of unknown uncertainty 

 Finally, uncertainty in forcing data can be represented using ensemble methods for 
spatial meteorological analysis. 

 Parameter estimation is a key scientific problem that must be addressed from a process perspective 
 Parameter specification/inference must be probabilistic, multi-objective, and regionalized 
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Taking Stock (overall conclusions)  

• The statistical downscaling methods that are popular in the water management 
community have serious shortcomings 
 Most “GCM re-scaling” methods produce hydroclimate representations with too much 

drizzle, too small extreme events, and improper representation of spatial scaling 
characteristics that are relevant to hydrology. 

• The choice of statistical versus dynamical downscaling is important: the climate 
sensitivities obtained from the 4-km WRF simulations differ from the guidance 
provided to water managers.  
 WRF shows wintertime increases in precipitation in the Colorado Headwaters that are 

consistent with a warmer and moister atmosphere, and occur when topography is 
adequately resolved by the regional climate model. 

• The choice of hydrologic model also affects projection outcomes, though less so 
if a hydrology model is well calibrated. 
 Calibration is successful in reducing climate change impact uncertainty, particularly 

for metrics that are closely related to the objective function used in calibration. 

• Projected outcomes on water resources depend significantly on subjective 
decisions made in calibrating hydrologic models, such as the choice of forcing 
data, the choice of calibration scheme, and the choice of objective function 

The state of the practice does not fully recognize these uncertainties 
– many studies are likely ‘overconfident’ 

 



Sensitivity of Hydrologic Impacts Assessment to Downscaling 
Methodology and Spatial Resolution 

Summary 

Key Lessons Learned 

1. Many Statistical downscaling methods do 
not adequately represent even current 
climate, particularly spatial patterns.  
 

2. Different hydrologic models can produce 
different climate change signals even after 
calibration.  

 
1. A single hydrologic model can produce 

different climate change signals with slightly 
different calibration methods 

Next Steps/Future Work 
1. Assessment of the climate change signal produced 

by different downscaling techniques and comparison 
of the strength of the climate change signal to the 
errors in the methods. 
 

2. Development of intermediate complexity downscaling 
methods. 

 
1. Development of hydrologic modeling approaches to 

improve representation of hydrologic processes and 
better characterize model uncertainty. 

References: 
 
Mizukami et al. 2013: Hydrologic implications of different large-scale 
meteorological model forcing datasets in mountainous regions. Journal of 
Hydrometeorology.  
 
Gutmann et al. in review: An Intercomparison of Statistical Downscaling 
Methods over the Contiguous United States Journal of Climate 

Key Lessons (what worked) 
• Testing statistical downscaling methods for metrics 

they were not designed for often reveals problems. 
 

• Similarly, calibration of hydrologic models to one 
metric (e.g. RMS error) often produces only limited 
improvement in other metrics (e.g. flashiness of 
runoff) 
 

Challenges (what didn’t work) 
• Reanalysis and gridded observations have temporal 

consistency problems that can make analysis of 
downscaling methods difficult.  

Uncalibrated Calibrated 
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Results: statistical vs. dynamical downscaling 
 Using VIC-WRF calibrated 

STATISTICAL DYNAMICAL CLIMATE CHANGE 
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