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Sensitivity of Hydrologic Impacts Assessment to Downscaling
Methodology and Spatial Resolution

Gap(s) Addressed

LT2.03 Information on the strengths and weaknesses of downscaled
data and the downscaling methodologies used to develop these
data (including both statistical and dynamical methods and
associated approaches for climate model bias-correction).

LT7.02 Uncertainty information on regional climate projections data,
including uncertainties from choice of bias-correction and spatial
downscaling methods.

LT4.04 Guidance on strengths and weaknesses of available versions of
spatially distributed hydrologic weather data that may be used for
both watershed hydrologic model development (Step 4) and in
climate model bias-correction (Step 2).

LT4.01 Guidance on strengths and weaknesses of watershed
hydrologic models/methods to support scoping decisions in
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Research Question(s)

1. How do methodological choices impact our
assessment of climate change

2.  What implications do different downscaling
method choices have?

3.  What affect do different hydrologic models
have?

4. Are these answers dependent on spatial
scale?

Collaborators/Schedule/Source of Support

» Reclamation, USACE, University of
Colorado, NCAR

2012 - downscaling and hydrologic
modeling

* 2013 — modeling with downscaled data,
analysis, and publication

* Reclamation 1646, USACE, NSF




Outline

« Motivation, Questions & Goals

- Analysis of downscaling methods
> Multi-resolution WRF simulations for the Colorado Headwaters
o Statistical downscaling based on GCM precipitation (CONUS scale)

- Analysis of hydrologic models

> How does the choice of hydrologic model affect portrayal of climate
change impacts on water resources?

> How do the methods used to configure/calibrate the model affect
the portrayal of climate change impacts

- Summary & Discussion



A controversial guestion

When will Lake Mead go dry?

Tim P. Barnett' and David W. Pierce'
Received 27 November 2007; revised 22 January 200%; accepted 5 February 2008; published 29 March 2008.

[1] A water budget analysis shows that under current conditions there is a 10% chance
that live storage in Lakes Mead and Powell will be gone by about 2013 and a 50% chance
that it will be gone by 2021 if no changes in water allocation from the Colorado River

system are made. This startling result is driven by climate change associated with
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Reclamation’s Basin Studies

17 Basin Studies funded so far

— Objectives such as: “Define current and future basin water supply and
demands, with consideration of potential climate change impacts”

RECLAMATION

Managing Water in the West

Hood River Basin, Oregon
Water Supply and Demand Study

Contact: Joel Hubble, 509.575.5848 x371, jhubble@usbr.gov

Reclamation and the Hood River County in Oregon, on behalf
of the Hood River County Water Planning Group
(HRCWPG), will conduct a Basin Study to create a
comprehensive water resource plan for the Hood River Basin,
which will include strategies to meet current and future water
demands.

The 339-square-mile Hood River Basin relies heavily on
surface water flows for irrigation, and groundwater
wells primarily for drinking water and
domestic/municipal use. The Basin also provides
habitat for multiple ESA-listed species (steelhead,
Chinook, and coho salmon, and bull trout) and many
nonlisted species that require water at specific times

and in specific quantities for their continued existence. Cycles of
drought, variations in snowpack quantities, and timing of snowmelt have resulted in significant water
supply and demand imbalances in the basin. These imbalances are expected to become more acute in
the future, and the cooperative approach of the Basin Study will be of paramount importance.

http://www.usbr.gov/WaterSMART/bsp/studies.html
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Downscaled CMIP5 climate projections’ documentation and

release notes available here.
Summary

Figure 1. Central Tendency Changes in Mean-Annual
This archive contains fine spatial resolution translations of climate Precipitation over the contiguous U.S. from 1970-1599
projections over the contiguous United States (U.S.) developed using to 2040-2069 for BCSD3, BCSDS5, and Difference.
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The West-Wide Climate Risk Assessment

Streamflow projection ensembles developed as part of the Reclamation
West-Wide Climate Risk Assessment

RECLAMATION

Managing Water in the West

Current Mouse Coordinates: Latitude: 39.986 Longltude: -129.577 Scale = 1: 18,489,298 » "M 6 0 O W

Streamflow Projections for the Western United States

s

[reeeT TS [T W ) 7 3 - TIYLITE I IT

)

cd) >

v

'TAS_”M?T.OH RN PN o S o UoTA |

3 i St MLt e SDUTH: - | | ‘

- -'::._:___ _;‘;' — b :_ | | [ L [
L

aneapolls
S U Al DAKOTA | :

MINNESOTA |

WFSCGHSf

developed by running the
meteorological projections
from the archive through
semi-calibrated VIC
hydrology models

U NI T E n 3 T ATES

1 ! .'”"'- AN :.'..... e o
: £ WY IR ot By ;i o L
- I~ [ . OKLAHOMA |
& -y b e, :.‘ |

a.y.zﬁw
EEban

: CULORADG’
! i i KANSAS

B e Y. oy el
. i v yDallas
£ / o = #.{E - iy

TEXAS :

"""""" = e :_. :Kansaamy ':.\_\

] {
| Mfssoum %

by i |
| P | |
P g
[ e ¥ \.'“f-ﬂ-mx"‘-_-.,

\LOUISIANA 5/

% | I [ | I y
& YOMING \ G |} Ay
%, g . = S —"‘“1" J i
e | | i | ToWA =
=5 b ; ; \ : )
e Ay { i :
y T NEBRAS KA 1;. - {

T ’ H_LEHO]S
I

Salnt Lu
~,

Pl
L TEN
ARKANSAS &

2
i) 1
MISSISSIPP)
|

|

{ "|




Methodology to Incorporate Climate Change

Information into Water Supply Projections
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Science guestions

B,

How does our portrayal of climate change impacts on
hydrology depend on methodological choices

O Downscaling methods
O Dynamical
O WRF (various resolutions)
O Statistical
U BCSDd, BCSDm, AR, BCCA, BCCAr
O Hydrologic model structure/parameters
O Multiple models

O Multiple parameter estimation strategies



Outline

« Motivation, Questions & Goals

- Analysis of downscaling methods
o Multi-resolution WRF simulations for the Colorado Headwaters
o Statistical downscaling based on GCM precipitation (CONUS scale)

- Analysis of hydrologic models

> How does the choice of hydrologic model affect portrayal of climate
change impacts on water resources?

> How do the methods used to configure/calibrate the model affect
the portrayal of climate change impacts

- Summary & Discussion



Results - 1: Downscaling method sensitivity
I
Methods
Bias Correction and Spatial Disaggregation
— BCSDm : Monthly — GCM disaggregated to daily (Wood et al., 2004)
— BCSDd : Direct to daily (Thrasher et al., 2012)
Bias Corrected Constructed Analogue (Hidalgo et al., 2008)
— BCCA : Analogs selected for all of CONUS
— BCCAr : Analogs selected for regional sub-domains
Asynchronous Regression (Stoner et al., 2012)
— AR
WRF (4km) Rasmussen et al. (under review)
— Applied to a sub-domain 2001-2008

Experiment

— Retrospective test: NCEP Reanalysis 1.9 degree -> Maurer 1/8™ degree
* Training: 1979-1999 Validation: 2001-2008

— Evaluated range of hydrologically significant metrics at watershed scales:
» bias, wet & dry day fractions, wet and dry spell lengths, extremes



High Resolution Simulations of the Colorado
Headwaters snowfall, snowpack and runoff

1. Perform past climate simulations using high resolution WRF model
— Grid spacing: 4 km.
— Continuous eight years: 2000 — 2008
2. Verified results of WRF integrations using NRCS SNOTEL data and showed that grid

spacing of at least 6 km needed to faithfully reproduce the spatial pattern and amount of
precipitation (Rasmussen et al. 2011, J. Climate).

3. Investigate enhancement of water cycle by adding CCSM 10 year mean temperature

and moisture perturbation from 50 year future A1B simulations from AR4 runs to NARR
boundary conditions

Headwaters
Full Domain domain
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/-year average cool-season precipitation :

1 October — 31 May
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/-year average SWE on April 1st
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7-year average SWE on June 1st
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Model - Obs (mm)

Mean difference in monthly precipitation between WRF and
SNOTEL from 8-year climatology data
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Statistical downscaling: Mean precipitation

i

Mean Precipitation is well represented in all but BCCA
All methods have some issues In late summer/fall

Most methods underestimate interannual variability, and have
problems with seasonality

Mean Monthly Precipitation
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Gutmann et al. (submitted)
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Statistical downscaling: Wet day fraction

b) BCSDd
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Test Domains: CONUS and Colorado Headwaters
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Statistical downscaling: Wet day fraction

o Lk

BCCA, BCSDd overestimate

wet day fraction - Subdomain Wet Day Fraction
BCSDd and AR do not scale 0.9
correctly (BCCA sort of) o
AR underestimates wet day 0.7
fraction, esp. at coarser
scales 0.6}
BCSDm slightly %3
overestimates wet day 0.4
fraction
0.3
BCCAr is only slightly better i
than BCCA ‘
0.1

WREF is largely unbiased

Gutmann et al. (submitted)



Statistical downscaling: Extreme events

&

BCCA, BCSDd underestimate
Extreme events Runoff

25

BCSDd, AR, and BCCA do
not scale correctly 20}

AR overestimates extreme
events, esp. at coarser
scales

mmiday S0yr retum

BCSDm is largely unbiased

BCCAr is substantially better
than BCCA . CLM

full res HUCS HUC4 HUG2

WREF is largely unbiased .

Gutmann et al. (submitted)



Impact of wet-day fraction cascades into other forcing variables

Wet-day fraction comparison (WY1980-08) Diurnal temp. range comparison (WY1980-08)
DJF MAM JIA SON DJF MAM JIA SON

BCSDday-Mo02 BCCA-M02 Mo2

BCSDmon-hM02

AR-Mo02




Analysis: 1. Forcing

Comparison of derived SW radiation

DJF [W/m?] MAM [Wm?] JUA [WImY]

(d BCCA and BCSDd produces
less SW radiation during
summer compared to the
others.

BCCA-M02

1 AR produces larger SW
radiation in South-west
during summer.

BCSDd-M02

1 Difference in wet-day
frequency may have more
impact on SW radiation
difference.

BCSDm-Mo02

U The magnitude of difference
is larger in summer.

AR-M02




Analysis: 2. Water balance
CLM VIC

ET [mm] RO [mm] - ET [mm] RO [mm]

Mo2

BCCA-M02

BCSDm-Mo02 BCSDd-M02

AR-Mo02

-200 O 200 200 O 200 -200 O 200 02 O 0.2 200 0O 200 -200 O 200 -02 O 0.2




ongoing researcr (see next talk)

—

Ongoing research: More fully evaluate the
continuum of downscaling_ogtions

Statistical downscaling based on GCM outputs
— BCSD, BCCA, AR

Statistical downscaling based on GCM dynamics
(water vapor, wind, convective potential, etc.)

— Regression-based methods
— Analog methods

Stochastic methods to relate the space-time variability
of downscaled fields (wet day frequency, extremes,
etc.) to synoptic scale atmospheric predictors

Dynamical downscaling using simple weather models

Dynamical downscaling using state-of-the-art RCMs



Outline

« Motivation, Questions & Goals

- Analysis of downscaling methods
o Multi-resolution WRF simulations for the Colorado Headwaters
o Statistical downscaling based on GCM precipitation (CONUS scale)

- Analysis of hydrologic models

= How does the choice of hydrologic model affect portrayal of
climate change impacts on water resources?

> How do the methods used to configure/calibrate the model affect
the portrayal of climate change impacts

- Summary & Discussion



Results - 2. Hydrologic model sensitivity

Climate change studies commonly involve several methodological choices that

might impact the hydrologic sensitivities obtained. In particular:

- Model structure

» Decide which processes to include

» Define parameterizations for
individual processes

» Define how individual processes

response
» Solve model equations

combine to produce the system-scale

- Mode/ parameters

» Define a-priori values for model
parameters

* Decide what model parameters we
adjust, if any
» Decide what calibration strategy we
implement, if any
0 Choice of objective function

U Choice of forcing data and calibration
period

Subjectivity in model

selection:

* How does the choice of model
equations impact simulations of
hydrologic processes?

« Missing processes, inappropriate
parameterizations?

Subjectivity in parameter

identification:

* How does our choice of model
parameters impact simulations of
hydrologic processes?

« Compensatory effects of model
parameters (right answers for the
wrong reasons)?



Comparison of extreme runoff — Inter-model difference

MO02 BCCA BCSDd BCSDm AR

High flow
(Q20yr)
[mm/day]

Low flow
(7Q10)
[mm/day]

0
0 0.4 0.8
VIC

Low flow estimate is more dependent on models
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Considering model structures

Semi-tile approach far compuriting
Each call has average Meosaic representation of different Each call has average Iongwave, latent heat, sensible heat
Vegelation parameters vegetation coverages at each call vegetation parameters and ground heat fluxes

rain and snow

surface
runaff

PRMS VIC Noah-LSM Noah-MP

Differences in both model architecture
and model parameterizations



Results: impact of model choice & calibration

L

How does hydrologic model choice affect the partitioning of precipitation into ET and runoff?

Evapotranspiration [mmfyear]

Uncalibrated model simulations Calibrated model simulations
Partitioning of precipitation into runoff and ET Partitioning of precipitation into runoff and ET
1000 . T T : 1000 T T :
—E&)— PRMS (CTRL) —E&— PRMS (CTRL)
—%F— VIC (CTRL) —5F— VIC (CTRL)
—§— Moah-L5M (CTRL) —&— MNoah-LSM (CTRL)
S00F —wr— Moah-MP (CTRL) B00F —%F— Moah-MP (CTRL)
—— FRMS (PGW) —— FRMS (PG
VIC (PGW) VIC (PGYW)
I Noah-LSh (PGW) I MNoah-LSM (PGW)
Moah-MFP (PGW) Noah-MP (FGW)
600 - Yampa ) G600 Yampa )

East
Animas

East
Animas

Evapotranspiration [mmfyear]

400+ - 4001 -
200+ . 200 .
O 1 1 1 O 1 1 1
0 200 400 600 800 1000 0 200 400 GO0 800 1000
Funoff [mmfyear] Runoff [mmfyear]

|:> - Climate change signal

O All models are run with WRF outputs at 4 km resolution.
L Uncalibrated models: Climate change signal in Noah (M ET and MRunoff) differs from

the rest of models (TNET and { Runoff).

O Inter-model differences are larger than climate change, even after calibration process.




Results: model structure vs. parameters

Total Runoff (mm) Total Runoff (mm)
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O Inter-parameter differences (VIC) have similar magnitudes to inter-model
differences when we look at monthly runoff.




Results: model structure vs. parameters

Future - Curent [mm|

Future - Current [mm|
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L Uncertainty in monthly sensitivities of internal states and fluxes is still
substantial, even when evaluating a limited set of model parameters.




Results: model choice vs. parameter strategy

~—
How does subjectivity in model choice and parameter identification affect climate change signal?
Mode/ structure Objective function
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More generally: Understanding, characterizing, and
reducing uncertainties in hydrologic models (next talk)

Motivation: The failure of Model Inter-comparison Projects

» Any two models have a large number of differences, and it is difficult to attribute inter-model
differences to specific modeling decisions

Approach

» Carefully scrutinize all (subjective) decisions made in model development and application, and
evaluate the impact of different options at different points in the modeling process

Guidance on characterizing hydrologic model uncertainty
» Different process-based hydrological models can be considered small permutations from a master
modeling template
QO  Different modeling options can provide the wrong results for the same reasons
O  Inter-model differences are overwhelmed by uncertainty in model parameters

» Characterizing hydrologic model uncertainty requires considering the different types of model error

O Uncertainty in individual process parameterizations can be represented using an
ensemble of model parameters.

O  There are cases where parameter uncertainty does not represent (i) scaling behavior;
and (ii) uncertainty in some process representations (where different parameterizations
have markedly different behavior) — in these cases, uncertainties can be represented
using multi-physics and multi-architecture ensembles

0  There are also cases where different modeling approaches are missing the same
processes and there is a residual amount of unknown uncertainty

QO  Finally, uncertainty in forcing data can be represented using ensemble methods for
spatial meteorological analysis.

» Parameter estimation is a key scientific problem that must be addressed from a process perspective
O  Parameter specification/inference must be probabilistic, multi-objective, and regionalized



Outline

« Motivation, Questions & Goals

- Analysis of downscaling methods
> Multi-resolution WRF simulations for the Colorado Headwaters
o Statistical downscaling based on GCM precipitation (CONUS scale)

- Analysis of hydrologic models

> How does the choice of hydrologic model affect portrayal of
climate change impacts on water resources?

> How do the methods used to configure/calibrate the model affect
the portrayal of climate change impacts

« Summary & Discussion




aking Stock (overall conclusions)

» The statistical downscaling methods that are popular in the water management

community have serious shortcomings
» Most “GCM re-scaling” methods produce hydroclimate representations with too much
drizzle, too small extreme events, and improper representation of spatial scaling
characteristics that are relevant to hydrology.

* The choice of statistical versus dynamical downscaling is important: the climate
sensitivities obtained from the 4-km WRF simulations differ from the guidance

provided to water managers.
» WRF shows wintertime increases in precipitation in the Colorado Headwaters that are
consistent with a warmer and moister atmosphere, and occur when topography is
adequately resolved by the regional climate model.

» The choice of hydrologic model also affects projection outcomes, though less so

If a hydrology model is well calibrated.
» Calibration is successful in reducing climate change impact uncertainty, particularly
for metrics that are closely related to the objective function used in calibration.

* Projected outcomes on water resources depend significantly on subjective
decisions made in calibrating hydrologic models, such as the choice of forcing
data, the choice of calibration scheme, and the choice of objective function

The state of the practice does not fully recognize these uncertainties
— many studies are likely ‘overconfident’



Sensitivity of Hydrologic Impacts Assessment to Downscaling
Methodology and Spatial Resolution

-
Summary Next Steps/Future Work
1. Many Statistical downscaling methods do 1. Assessment of the climate change signal produced
not adequately represent even current by different downscaling techniques and comparison
climate, particularly spatial patterns. of the strength of the climate change signal to the

errors in the methods.

2. Different hydrologic models can produce

: . . 2. Development of intermediate complexity downscalin
different climate change signals even after P piextty g

. ) methods.
calibration.
1. Development of hydrologic modeling approaches to
1. Asingle hydrologic model can produce improve representation of hydrologic processes and
different climate change signals with slightly better Chla};’aCterZe model Uncertainty-l.b 4
dlﬁerent Calibration methOdS . Fslﬂthngg:wgpllaﬂ;ﬁtffmnﬂ andd ET ) Mimﬁngﬁ?ﬁiipﬂ:ﬁgﬁfﬂ rumalf and ET

Key Lessons Learned

Key Lessons (what worked)
. Testing statistical downscaling methods for metrics
they were not designed for often reveals problems.

Foof. T o i o imtean |

. Similarly, calibration of hydrologic models to one
metric (e.g. RMS error) often produces only limited I
improvement in other metrics (e.g. flashiness of References:
runoff)

Mizukami et al. 2013: Hydrologic implications of different large-scale
] meteorological model forcing datasets in mountainous regions. Journal of
Challenges (what didn’t work) Hydrometeorology.

. Reanalysis and gridded observations have temporal
consistency problems that can make analysis of
downscaling methods difficult.

Gutmann et al. in review: An Intercomparison of Statistical Downscaling
Methods over the Contiguous United States Journal of Climate
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