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QUESTION: Does fine-grained dredge material impact the coast,
and if so, how does it compare to natural processes???
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“The issue”

Erosion happens...

The “80:20” Rule

The Monterey Bay National
Marine Sanctuary

doesn’ t like dumping on
its protected natural
resources

UNITED STATES CODE OF FEDERAL
REGULATIONS, TITLE 15, PART 922.40
‘PROHIBITED ACTIVITIES”
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The 2009 USGS
experiment's goals

1) Determine if fine-
grained dredge
material
on the beach and
inner shelf, and if
not, ?

2) If the fine-grained
dredge sediment is not stable, does it go?
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Determine if fine-grained dredge material
is stable on the beach and inner shelf

Measure beach and seabed
response (change in grain
size) to determine if
change, and thus :
occurs

Measuring seabed grain size using the USGS
“Flying Eyeball” from the R/V Frontier
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If fine-grained dredge material is (or is not)
stable on the beach and inner shelf, why?

Measure (tides,
waves, and currents)
using instruments and
determine if
hydrodynamics are
sufficient to or
of fine-
grained material on the
beach and inner shelf Deployment of hydrodynamic and sediment transport

tripods from the R/V Shana Rae
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Where does the fine-grained dredge material
go if it is not stable on the beach and inner
shelf?

1) Measure

using tripods (What are

sediment concentrations, where are
they going, and how fast?) and

sediment traps (Is sediment
relict, fluvial, or dredge material?)

2) dredging using Delft3D

Using geochemistry to

dete_rmme Dredge sediment: ~ High Cu, low 'Be
sediment  Relict shelf sediment: Low Cu, low 7Be/2'%Pb,,
origin New fluvial sediment: Low Cu, high "Be/?'°Pb

Schematic of sediment trap design

low 'Be
high "'Be

Xs?



remnants
of Super
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~48 m3/m
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"""""" Average: 450 m3/day, 71% fines
(7600 m3 total)
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Percent by mass

Grain size
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The influence of El Nifio-Southern Oscillation (ENSQ) cycles on wave-driven
sea-floor sediment mobility along the central California continental margin
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unconsolidated sediments can support very high species diversity
(Coleman et al, 1997; Spelgrove, 1999). Ecologists have long
recognized that the structure and function of benthic marine
ecosystems are closely linked to oceanographic processes
(Mann, 1973; Graham et al. 1997); most studies, however
have relied either upon qualitative descriptions of oceanographic
factors {e.g., “low", “medium", or “high" energy environments) or
on quantitative values based on mean oceanagraphic conditions
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standing the natural variability of sea floor disturbance is also
critical for local, State, and Federal agencies responsible for
permitting offshore activities such as trawling. dredging, and the
placement of sea-flsor engineering structures (cables, pipelines,
others) that disturb the sea floor,

‘The aceanographic processes that disturb the continental shelf
and upper slope irclude the actions of surface waves, internal
waves, and currents (tidal, density, wave-driven, wind-driven,
and geostrophic) The North Pacific Ocean can generate extremely
large surface waves, and the resulting near-bed wave arbital
velocities on the continental shelf generally are much larger than
wvelocities doe to currents and intermal waves (Sherwood et al
1994; Storlazz and Jaffe, 2002: Storlazzi et al. 2003). Although
many studies have investigated the wave climate along central
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Implications of Findings to Dredge
Disposal Projects

In situ measurements to calibrate and validate
numerical sediment transport models , in
conjunction with meteorologic and
oceanographic climatologies, can provide
insight into the suitability of fine-grained
dredge disposal for other locations.
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