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1. Executive Summary 

The U.S. Army Corps of Engineers (USACE) manages critical hydrologic infrastructure across 
the United States, including reservoirs, locks, dams, and levees. To effectively plan, design, 
operate, and maintain this infrastructure, an accurate characterization of flood risk is essential. 
Recent research has suggested that the stationarity assumption, which has stood as a critical basis 
for traditional approaches in this field, may lack fidelity. Though the stationarity assumption 
suggests that hydrologic processes are stationary through time, nonstationarities of various forms 
have been uncovered in historical, hydrological data. This has forced researchers and planners to 
take nonstationarities into account as they move forward with critical activities. 

As a whole, this report provides a detailed analysis and literature review of work in the field. 
Specifically, the authors seek to better bound the definitions of stationarities and 
nonstationarities while exploring the relationships between weather patterns and flooding, 
simultaneously highlighting the mechanisms that drive nonstationarity variation over time. This 
allows for a deeper discussion of trend and long-term persistence (LTP) detection techniques and 
how these techniques can be incorporated into flood frequency analysis, better accounting for 
nonstationarities in hydrological data. Through a multi-factored discussion on the impact of 
future changes on future floods, the authors extend basic concepts of frequency, risk, and 
reliability under nonstationarity conditions, summarizing how such approaches can be applied in 
a risk-based framework. For USACE, as well as planners and engineers more broadly, this 
allows for better informed engineering design to minimize flood risk in light of changing 
behaviors in hydrological processes and the mechanisms driving these changes.  
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2. Introduction and Objectives 

The U.S. Army Corps of Engineers (USACE) manages critical hydrologic infrastructure across 
the United States, including reservoirs, locks, dams, and levees. The planning, design, operation, 
and maintenance of this infrastructure require an accurate characterization of flood risk and the 
uncertainty and variability associated with that risk, which are founded on a quantitative estimate 
of the frequency and magnitude of the floods that could occur at a given location. The hydrologic 
methods that have traditionally been used for this type of flood risk analysis typically are built on 
assumptions that past and future floods arise from hydrologic processes largely stationary 
through time; therefore, the past informs future flood planning, management, and/or risk 
reduction strategies, as well as the quantitative estimates of frequency and magnitude these 
depend on. However, changes in land use and land cover, climate, water infrastructure, and other 
factors can lead to changes in the probability of flooding over time (meaning that hydrologic 
processes are nonstationary through time). Management of future flood risk therefore requires a 
general understanding of how nonstationarity in hydrologic processes could affect future flood 
risk and a set of tools to incorporate nonstationary hydrologic processes into engineering 
planning and design.  

USACE works closely with the other major water resources manager in the U.S., the Department 
of Interior’s Bureau of Reclamation (Reclamation), to understand how changes in hydrologic 
processes impact water management. USACE has more than 600 dams nationwide and 
Reclamation has approximately 500 dams west of the Mississippi River. The common missions 
of the two agencies are hydropower, dam safety and critical infrastructure, water supply, 
ecosystem restoration and protection, and recreation. USACE has additional federal authorities 
to act during floods, and both agencies are intensely interested in the issue of nonstationarity as it 
relates to flood frequency analyses and other aspects of water resources management (Brekke et 
al. 2009). In January 2010, both agencies, together with the federal interagency Climate Change 
and Water Working Group (CCAWWG), sponsored a forum for national and international 
experts to address issues and potential alternatives to the assumption of stationarity in hydrologic 
frequency analysis. The “Workshop on Nonstationarity, Hydrologic Frequency Analysis, and 
Water Management” addressed two primary issues: (1) how should water management agencies 
plan for and operate water resources in nonstationary conditions and (2) how should agencies 
develop and implement an effective collaborative approach to move forward (Olsen et al. 2010). 
This workshop led to a special collection of papers on the topic of nonstationarity in the Journal 
of the American Water Resources Association in June 2011 (Kiang et al. 2011).  

This current nonstationarity document and the annotated bibliography accompanying it 
summarize the state of knowledge on the topic of nonstationarity, adding to the literature other 
agencies and water resources managers can use. The primary goal of this report is to provide a 
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literature review of methods of hydrologic frequency analysis that can be applied under 
nonstationary conditions. A secondary goal is to support future technical guidance to be 
produced by USACE in the future, including: 

• Guidance on how to evaluate stationarity versus nonstationarity in hydrologic processes at a 
particular location  

• Guidance on how to account for nonstationary hydrologic processes in both flood frequency 
analysis and risk-based design of infrastructure 

• General hydrologic guidance on how to deal with climate change in the context of flood 
frequency analysis. 

This literature review and the annotated bibliography provide a vital resource for district and 
other USACE staff, to provide them with expert advice and direction that supplements guidance.  

The remainder of this document is organized as follows: Section 2 provides historical context on 
the topic of nonstationarity for engineering design, as well as definitions of stationarity and 
nonstationarity. Section 3 describes the relationships between synoptic weather patterns and 
flooding, including recent advances relating to the impact of climate change and climate 
variability on extreme precipitation. Section 4 focuses on analytical methods for identifying 
trends and long-term persistence (LTP) in hydrologic processes due to both stationary and 
nonstationary processes. Section 5 reviews methods of flood frequency analysis that can 
incorporate nonstationary hydrologic processes. Section 6 reviews recent research on the impact 
of future changes in land use and/or climate change on future floods. Section 7 summarizes 
recent research, which extends basic concepts of frequency, risk, and reliability under 
nonstationary conditions and summarizes how such approaches could be applied in a risk-based 
framework.  

3. Nonstationarity in Flood Frequency Analysis 

A fundamental assumption in flood frequency analysis, and particularly in the Guidelines for 
Determining Flood Flow Frequency (Water Resources Council 1982), is that annual maximum 
flood discharges are independent and identically distributed (IID) random variables. This 
assumption implies that the statistical characteristics of the flood data are invariant with time, 
which enables the use of well-accepted statistical methods to estimate the annual probability of a 
flood with a specified magnitude or, conversely, the magnitude of a flood with a specified 
recurrence interval. These statistical representations of flow characteristics are central 
components of water resource planning and design.  

Water resources engineers have always understood, however, that many rivers and streams 
exhibit temporal patterns that deviate from these assumptions, especially over long timescales 
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and in situations where obvious changes in land use, climate, or infrastructure have caused 
changes in the distribution of flood discharges over time (e.g., Chow 1964). Some of the most 
widely invoked causative factors in nonstationarity in flow distributions include urbanization 
(Villarini et al. 2009a, Vogel et al. 2011, Prosdocimi et al. 2014, Slater et al. 2015 Hecht 2017) 
and changes in precipitation through time (USACE 2011). However, other potential drivers of 
nonstationarity have been cited, including changes in river channel capacity (Slater et al. 2015), 
and groundwater depletion (Hirsch 2011). Hirsch (2011) argued that hydrologists must not lose 
sight of these many sources of nonstationarity, recognizing that some of these may result in more 
significant changes than climate change. Using data from more than 400 basins, Slater et al. 
(2015) documented that changes in flood hazard driven by changes in channel capacity are 
smaller, but more numerous, than those driven by streamflow. This work demonstrated that 
accurately quantifying changes in flood hazard requires accounting separately for trends in both 
streamflow and channel capacity.  

In watersheds where the imprint of anthropogenic activities appears in detectable changes in 
flood discharge records, traditional approaches for hydrologic design may need to be adapted to 
account for this nonstationarity in hydrologic processes. In particular, we must develop methods 
to use both historical flood information and current trends through time to estimate the frequency 
and magnitude of future hydrologic events. Such nonstationary flood frequency distributions will 
require new approaches to flood frequency analyses (Khaliq et al. 2006, Villarini et al. 2009a), 
including the integration of nonstationary distributions into a risk-based decision framework 
(Rosner et al. 2014). Vogel (2011) suggested that nearly every hydrologic method on which our 
profession is based will need to be adapted to account for the increased uncertainty driven by 
nonstationarity in hydrologic processes. The notion that “stationarity is dead” is now pervasive, 
as indicated by over 2,500 citations, to date, of Milly et al. (2008). 

However, there are a number of reasons to be cautious in the application of new methods of 
hydrologic frequency analysis that account for nonstationarity. We should not be so quick to 
dispense with the notion of stationarity given that to date, most of our water infrastructure was 
designed under the assumption of stationary conditions. Matalas (2012) provided ample reasons 
for questioning “the degree to which real or perceived nonstationarities in hydrologic processes 
(should) affect the underlying processes and methods of making water planning and management 
decisions.” He argued that “the assumption of stationarity has not yet been pushed to the limit of 
its operational usefulness in the face of a changing climate.” Montanari and Koutsoyiannis 
(2014), Serinaldi and Kilsby (2015a), and Vogel et al. (2015) argued that there may still be very 
good reasons to employ traditional methods based on stationary hydrologic processes.  

On the other hand, where hydrologic extremes are increasing and this trend is not detected, there 
is the risk of under-estimating future extremes and under-designing to prepare for them. To 
protect against this possibility, there is now compelling evidence for the need to consider 
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methods of flood-frequency analysis based on both stationary and nonstationary hydrologic 
processes. The remainder of this report is devoted to this topic. 

3.1 Stationarity Versus Nonstationarity 

The terms stationarity and nonstationarity are not uniformly applied or defined in the water 
resources literature. Milly et al. (2008) described stationarity as “the idea that natural systems 
fluctuate within an unchanging envelope of variability.” Similarly, Salas (1993) stated that “A 
hydrologic time series is stationary if it is free of trends, shifts or periodicity.” Mathematically, 
given any time series of a hydrologic variable ut (t = …, -1, 0, 1, …) and a cumulative 
distribution function of any set of n consecutive u’s F(ut + 1, ut + 2, …, ut + n), if F is independent of 
t for all intervals n > 0, the time series is strictly stationary (Kendall et al. 1983). Put another 
way, for a stationary variable, the joint distribution of any set of n consecutive variables is the 
same, regardless of what subset of the time series is selected.  

By extension, nonstationary hydrologic processes can be viewed as processes that do not 
conform to these definitions. Specifically, Westra et al. (2014) introduced the term 
‘‘hydrological model nonstationarity’’ as the situation where hydrological model parameters 
vary in time, and thus depend on the period of record used for their estimation. Note, however, 
that while the presence of abrupt and slowly varying changes is generally interpreted as an 
indication of nonstationarity, these changes could also be related to short- or medium-term 
oscillations within a time series that is stationary overall (Klemes 1974, Potter 1976, Cohn and 
Lins 2005, Koutsoyiannis 2006) (Figure 3-1). Individual realizations from subsets of a stationary 
hydrologic time series can therefore exhibit excursions that persist for long time periods. If one 
considers a deterministic or a statistical-dynamical model for floods, then nonstationarity implies 
changes in the parameters of that model, not just in the short-term statistics, which could vary 
systematically, even with fixed parameters.  
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Figure 3-1: Time series that may be stationary overall (top) can contain an apparent nonstationary segment 
(Koutsoyiannis 2006). 

3.1.1 Dynamical Systems Perspective on Nonstationarity 

The dynamical systems literature provides another way to understand stationarity. Many 
nonlinear dynamical systems, including the climate system, admit multiple equilibrium regimes 
as solutions (Lorenz 1990). The transient response of such systems leads to persistence near one 
of these regimes, with infrequent transitions to another regime. The result can be long-term or 
interannual variability in each of these states, such that the statistics associated with the 
trajectories can vary markedly over time. Such variation in the statistics can occur even though 
the parameters of the underlying model do not change, and in that sense, the model is stationary. 
The statistical and the dynamical systems views of nonstationarity are consistent if one considers 
an infinite sampling horizon, and accounts for the joint distribution of the variables of interest at 
appropriate lags to capture the transition dynamics.  

Under this dynamical systems perspective on nonstationarity, oscillatory or quasi-periodic 
climate dynamics that influence flood statistics can be considered stationary processes. However, 
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the possibility exists for model parameters or external forcings to change the internal dynamics 
of a system, potentially changing over time to reach a different set of equilibria.  

3.1.2 Functional Nonstationarity 

From a purely statistical perspective, because persistent excursions can occur within a stationary 
process, distinguishing between stationary and nonstationary processes is difficult, and thus 
selecting a suitable modeling approach to adjust for nonstationarities is also difficult. This 
problem is compounded when relatively short-duration hydrologic records can make it extremely 
difficult to distinguish the decadal-scale oscillations resulting from climate variability in many 
locations from longer term trends (see Section 3). Moreover, the interacting impacts of climate 
change, urbanization, or other nonstationary factors on an observed hydrologic data set are 
commonly unknown (Villarini et al. 2009a).  

The purpose of fitting a probability distribution to annual peak streamflows for hydrologic 
design, however, is not necessarily to fully describe their underlying probability distribution but 
rather to make probabilistic statements about flood characteristics for a future planning horizon 
or project lifetime in a functional engineering environment. Therefore, the issue is not whether 
observations arise from a long-term excursion from some underlying stationary process but 
rather whether the probability distribution of future floods will resemble the distribution that is 
obtained from fitting a probability distribution to observations over a historical record. Jain and 
Lall (2001) present an example of how complex, low-frequency variations in climate states can 
lead to interannual, interdecadal, and longer variations in flood magnitudes that may be 
predictable, contingent on the predictability of the underlying climate state. In doing so, they 
demonstrated the challenge of distinguishing stationary from nonstationary behavior, as well as 
the use of a simple nonstationary model of climate states to improve future predictions of flood 
frequency.  

For the purpose of water resources engineering and management, we define stationary 
hydrologic time series as those that “fluctuate within an unchanging envelope of variability” 
(Milly et al., 2008). If a population of floods is stationary by the Kendall et al. (1983) definition 
(Section 2.1), but the time series is in the midst of a decades-long excursion due to internal 
climate dynamics, then traditional frequency analysis methods could be extended to other 
information, such as paleoflood information, to properly constrain and/or interpret the estimates. 
USACE (2014) describes appropriate methods for use of paleoflood information in USACE 
analyses. Similarly, if a population of floods is stationary by the Kendall et al. (1983) definition, 
but a watershed has undergone urbanization over several decades, followed by restoration 
efforts, traditional frequency analysis methods need to be extended to consider information 
regarding the impacts of such urbanization and restoration efforts, to properly model the future 
flood frequency relationships. Figure 3-2 discusses the effect of urbanization on analysis of 
streamflow. 
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Aberjona River—Massachusetts 

The Aberjona River basin in the Boston metropolitan area has a 74-year record of annual peak flows (1940–2013) that 

enables a long-term analysis of the impacts of urbanization on floods. Using a data fusion approach that combines recent 

one-meter-resolution satellite imagery with building construction dates obtained from tax assessor files, Vogel (2017)6  

documented that 26%–34% of the total watershed area is currently impervious, while only 6%–13% of the total watershed 

area was impervious in 1940. This urbanization has coincided with a statistically significant upward trend in observations of 

the annual maximum instantaneous streamflow over that same period (see Figure 2 in Vogel et al. 2011). It was also 

discovered that impervious cover, along with population and housing density proxies of urbanization, have statistically 

significant correlations with this observed increase in annual maximum instantaneous flows.1  

Similar to Villarini et al. (2009a), Hecht (2017) argued that in such situations when a watershed has undergone rapid and 

continuous urbanization over a historical period, estimates of design flood events should be revised to reflect current 

conditions, including incorporating observed changes in impervious cover (Prosdocimi et al. 2015). Hecht (2017) and Serago 

(2016) documented approaches for revising estimates of design events to reflect current conditions, when significant 

nonstationarities have been observed over the historical period. The practice of using indicators of urbanizations as 

covariates in nonstationary flood frequency analysis was further explored by comparing the impacts of different urbanization 

indicators (e.g., population density, housing density, impervious cover) on extreme design flood events.1  

Trend in annual maximum for Aberjona River, Massachusetts. Note log scale on y-axis, and general upward trend in 

annual maximum streamflows throughout the record (after Vogel et al. 2011). 

. 

Figure 3-2: Aberjona River—Massachusetts. 

                                                                          
6 Vogel, personal communication, 2017. 
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4. Climate and Floods 

To incorporate consideration of nonstationarity into flood frequency analysis, it is important to 
understand the context in which floods occur and the ways in which apparently stationary 
climate drivers are changing as a result of anthropogenic climate change and variability. This 
section summarizes some of the extensive literature on large-scale atmospheric circulation 
patterns, decadal and multidecadal oscillations in ocean/climate state, and the correlations 
between these different climate states and flood frequency/magnitude. The key points from this 
section are as follows: 

• Regional flood frequency analysis, even under assumed stationarity, can be improved with 
information on the scale and nature of atmospheric circulation mechanisms and the surface 
hydrologic mechanisms that govern floods for watersheds of different size. 

• Climate variations over periods of years and decades influence the mechanisms of moisture 
delivery in a persistent way over relatively large geographical scales. 

• Large-scale climate teleconnections that can persist for decades may modulate the 
mechanisms that lead to changes in flood incidence. Two caveats apply: teleconnections can 
be difficult to find and trace to effects and are strongly contingent on location.  

• Many climatic factors important to global and local hydrologic processes have changed and 
are projected to change more as a result of anthropogenic carbon-related forcing, and there is 
significant evidence of changes in extreme precipitation and floods over the last century in 
many locations.  

• In some regions a combination of annual maxima and peak over threshold modeling may be 
useful to describe flood frequencies, because there may not be a single dominant mechanism 
driving flooding. However, changes in the mechanisms and their persistence must be 
explored further to begin to evaluate future projections for regional flood frequency, 
including seasonal expression. 

Hirschboeck (1988) defined flood hydroclimatology as the study of the climate context of floods 
(i.e., an understanding of the long-term variation in the frequency, magnitude, duration, location, 
and seasonality of floods, as determined by an interaction of evolving regional and global ocean 
and atmospheric circulation patterns). This definition is broad enough to cover precipitation and 
storm-surge-induced flooding. Hirschboeck (2003) suggested that “unusually large floods in 
drainage basins of all sizes” may be related to large-scale atmospheric circulation anomalies. 
Understanding how storm tracks shift may be key to understanding how the frequency, intensity, 
and location of hydrologic extremes may evolve as climate changes. Hirschboeck’s (2003) 
observation is that meridional moisture transport from the Pacific and Atlantic oceans leads to 
most of the extreme floods in the continental United States. A number of studies have 
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investigated these linkages (Jain and Lall 2001, Kwon et al. 2008, Lima et al. 2015, Dettinger et 
al. 2011, Barth et al. 2017).  

Later, Hirschboeck (1991), following on a study by Bryson and Hare (1974), reproduced 
seasonal moisture pathways into different regions of the United States and connected them to the 
operative circulation systems associated with extreme rainfall and flooding in each season. The 
key insights from Hirschboeck (1987a, 1988) and Hirschboeck et al. (2000) frame some of the 
central topics surrounding the linkages between climate and flooding, and include: 

1. Because extreme floods are often associated with blocking ridges and cutoff lows, it is 
reasonable to expect that drought and flooding may occur in adjacent areas. 

As an illustration, in the spring and summer of 2011, the Southwest experienced nearly the 
worst drought since the 1930s Dust Bowl, yet the Mississippi River basin had a significant 
flood with waves of precipitation hitting different sub-basins as the season progressed.  

2. Floods are fundamentally variable and climatic variations over decadal and longer 
periods lead to temporal variations in the mean, variance, and other statistics of 
regional floods (i.e., LTP). 

Where regime-like behavior in climate exhibits LTP, one may need to account for a heavy-
tailed flood distribution (Mandelbrot and Wallis 1968 and 1969, Klemes 1974, Vogel et al. 
2011, Koutsoyiannis 2003, Cohn and Lins 2005, Lins and Cohn 2011). Where the regimes 
are quasi-periodic, because of forcing by El Niño Southern Oscillation (ENSO), the Atlantic 
Multidecadal Oscillation (AMO), the Pacific Decadal Oscillation (PDO), or other 
teleconnections, the incorporation of paleoflood information could average out such 
nonstationarities and be used as an approximation of a stationary flood frequency curve.  
Using both a long streamflow record and a 100,000-year integration of a physically based 
climate model for ENSO, Jain and Lall (2001) showed that there was structure in climate 
variability at multicentury scales. Thus, for each record length they considered, including 
those spanning the typical length of paleoflood records, the frequency with which rare 
climate extremes estimated from a given period were exceeded in a subsequent period of the 
same length was inconsistent with what one may expect by chance. The implication is that 
even without external forcing, the absence of stationarity creates a significant potential for 
under-design or over-design of flood infrastructure. 
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3. Internal variability of the climate system can lead to multiple equilibrium solutions for 
the same forcing that may persist and lend a regime-like structure to atmospheric 
circulation, which may in turn lead to the persistence and nonstationarity of flood 
regimes. 

A number of recent studies demonstrate the importance of climate regime-like structure in 
flood risk for the United States. Nakamura et al. (2013) demonstrated that the 21 most 
extreme historical floods in the Ohio River basin were associated with a persistent, large-
scale atmospheric circulation pattern that funnels moisture from the Gulf of Mexico into the 
region. This circulation anomaly, rather than a moisture anomaly, was identified as the 
driving factor in these floods. Lavers and Villarini (2013a) examined the annual maximum 
flood peak records from 1979 to 2012 over the central United States and showed that the 
majority of the flood peaks over large areas of the study region, as well as the most intense 
ones, are associated with atmospheric rivers (narrow regions of strong water vapor transport). 
They also showed that these events are associated with characteristic pressure patterns, with 
high-pressure systems over the Gulf of Alaska and the U.S. East Coast, and a positive phase 
of the North Atlantic Oscillation (NAO). Knox (2000) pointed to abrupt changes in flood 
frequency in the Upper Mississippi and Colorado River basins over the Holocene epoch, 
associated them with key atmospheric circulation patterns, and noted that the increased 
incidence of floods in these regions corresponds to periods with relatively rapid climate 
change over the Holocene.  
Wilby and Quinn (2013) used the Lamb weather types for Great Britain, which classify 
synoptic weather patterns in the region, to explore the incidence of extreme floods for each 
Lamb weather type for 1871–2011. Similar work has been conducted for Germany by Petrow 
et al. (2009) and Prudhomme and Genevier (2011) for Europe. Wilby and Quinn (2013) 
found that flood recurrence in Britain exhibits decadal to multidecadal variability, with 
increased incidence of flooding between 1908 and 1934, 1977 and 1988, and from 1998 on. 
They found that five weather types account for 68% of flood occurrence, with three of these 
weather types associated with widespread winter floods. The mean frequency of occurrence 
of these flood-associated weather types does not show changes since the 1930s, but there is a 
trend toward declining persistence and increased precipitation associated with the anti-
cyclonic weather types. A similar classification of weather types is currently not available for 
the United States, though it may useful for improving process-driven attribution of changes 
in flooding.  
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4. In certain regions of the United States where multiple causal mechanisms are active, 
mixture distributions identified by Hirschboeck (1987a, 1987b, 1988) may be more 
appropriate for modeling floods and, as a result, climate change may be expressed in 
floods through shifting probability distributions of atmospheric regimes. 

Hirschboeck (1987b) and Hirschboeck et al. (2000) discussed the spatial and temporal scales 
of meteorological phenomena and associated floods. Macroscale or synoptic scale circulation 
features develop over dozens of hours to many days and cover large regions. Specifically for 
catastrophic floods, Hirschboeck (1987b) provided a classification of circulation and 
precipitation mechanisms and scales for the United States that extends schemes originally 
proposed by Maddox et al. (1979, 1980). The associated features may be recurrent, covering 
a regional scale such that different parts of a large basin may experience heavy rain in waves, 
thus pre-conditioning the system for extreme flooding. Mesoscale processes may have 
relatively short durations and smaller areas of intense impact. The two scales may be linked 
through mesoscale convective complexes, such as those that form typically in the Midwest 
over the summer. As the larger scale circulation patterns increase in intensity, warm, moist, 
low-level jets, tropical storms, extratropical cyclones, and fronts become important. These 
have much larger scale, preferred travel directions that intersect with the orientation of 
drainage basin topography and duration.  
Finally, macroscale systems may be nearly hemispheric in scale and are associated with 
stationary fronts and blocking patterns that may persist for days. Particular phenomena of 
interest include (1) monsoonal circulations at subcontinental scales, and (2) pronounced wave 
patterns that interact with transient eddies or waves that lead to filamentary moisture 
transport from the tropics to the mid-latitudes. The latter were termed tropospheric rivers by 
Newell et al. (1992) and Newell and Zhu (1994) and have been replaced, more recently, by 
the terms “moisture conveyer belt” and “atmospheric rivers.” Figure 4-1 discusses 
atmospheric rivers. 
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Atmospheric Rivers, Tropical Cyclones and Flooding 

Dettinger (2011) indicated that most historical floods in California are associated with atmospheric rivers (ARs). He analyzed 

the frequency and intensity of AR-related storms that occurred on the West Coast in historical data and in the seven 

Intergovernmental Panel on Climate Change (IPCC) general circulation model (GCM) simulations corresponding to the 

A2 Greenhouse Gas (GHG) Scenario that assumes increasing carbon dioxide (CO2) emissions through the 21st century. He 

found that while average AR intensities do not change much in the projections, the models projected increased clustering of 

ARs in some years, increased total water vapor transport per AR, and notable increases in the transports of the very largest 

AR storms, all factors that portend an increase in severe flooding in California. ARs are thought to account for about 80% of 

historical floods in northern and central California (Dettinger and Ingram 2013) and significant peak floods in western 

Washington State (Neiman et al. 2011). Steinschneider and Lall (2015) developed an analysis of nonstationary precipitation 

extremes in California that included information on ARs for risk estimation. Related work is discussed in Dettinger et al. 

(2009, 2011). Lavers and Villarini (2013b) attributed much of the extreme winter/spring precipitation over Northern Europe to 

ARs. Lavers and Villarini (2013a) also found a strong relation between ARs and flooding over large areas of the central 

United States.  

Villarini and Smith (2010) showed that there are large areas east of the Appalachian Mountains and Florida for which tropical 

cyclones (TC) are responsible for a significant fraction of the annual maximum flood peaks. Using the shape parameter of the 

generalized extreme value (GEV) distribution as a measure of tail thickness, they also showed that TCs control the upper tail 

of the flood peak distribution over these areas. These results are consistent with the findings by Waylen (1991) for Florida. 

Villarini and Smith (2013) extended their analyses to Texas and found that TCs are responsible for up to 20% of the annual 

maximum flood peaks along the coastal region. However, they are not associated with the largest flood events to the same 

degree found for the eastern United States. Kunkel et al. (2010) found that the contribution of North Atlantic TCs to heavy 

rainfall has been increasing over time. These results were then generalized by Villarini et al. (2014), who highlighted the 

regions of the United States that are more susceptible to large flooding from TCs.  

Rainfall and flooding associated with tropical cyclones is not just a coastal issue, and it is not only of interest to the eastern 

United States. Galerneau et al. (2010) provided a climatology of predecessor rain events (PRE) over the 1995–2008 period 

(see also Moore et al., 2013). PREs are areas of heavy rainfall accumulations located about 1,000 km poleward of TCs. 

Rowe and Villarini (2013) examined the role of PREs as flood agents over the central United States. They showed that PREs 

can cause annual maximum flood peaks over large areas of the central United States, and flood peaks in excess of the 10-

year flood peak. Moreover, PREs have been responsible for extensive flooding over some of the largest U.S. midwest 

metropolitan areas, including Chicago and Detroit. 

Example of ARs in the Pacific Ocean, as simulated by reanalysis and GCM projections. These ARs are thought to be 

responsible for many of the extreme precipitation events in the western United States. Colors represent water vapor and 

vectors represent 925-mb wind field (Dettinger, personal communication, 2016). 

. 

Figure 4-1: Atmospheric Rivers. 
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4.1 Role of ENSO and Other Teleconnections 

The ENSO phase, as well as other large-scale teleconnections, modulate the occurrence of 
flooding in the United States, and as such, deserve some overview here. For example, Cayan 
et al. (1999) found a relationship between the ENSO phase and precipitation and flood/drought 
occurrence in the western United States. The response of streamflow to ENSO was clearer than 
that for rainfall, reflecting both the spatial averaging and integration of the signal in streamflow 
and the temporal persistence of the ENSO modulation relative to short-duration precipitation 
events. Pizarro and Lall (2002) used rank and raw correlations together to analyze the 
relationships between annual maximum floods and ENSO/PDO phases at 137 U.S. Geological 
Survey (USGS) Hydro-Climatic Data Network (HCDN) stations in the western United States. 
Their results indicated variable correlation of ENSO indices with regional hydrologic variables. 
Pizarro (2006) extended this work to nonlinear seasonal forecasts of flood potential at the same 
sites.  

Andrews et al. (2004) analyzed the relationship between annual maximum floods in California 
and the Multivariate ENSO Index (MEI). Their results suggested that the general state of ENSO 
rather than the specific values of the MEI may influence changes in the underlying flood 
probability distribution. In Northern California (north of latitude 41ºN), the annual maximum 
flood was approximately 30% lower during an El Niño year than during non-El Niño years. They 
attribute the north-south variation in flood magnitude along the California coast during El Niño 
and non-El Niño conditions to the shift in the location of the polar jet relative to the coastline. 
The eastward extension, the southward displacement, and the rotation of the polar jet during the 
November–March period during El Niño conditions (Masutani and Leetmaa 1999) lead to 
tropical moisture being funneled to a more southern location associated with a more pronounced 
meridional flow.  

Zhang et al. (2010) explored the effect of the ENSO, PDO, and NAO indices on 1-day and 3-day 
winter extreme precipitation over North America using composites of these indices and 
covariates in a GEV regression model. They found statistically significant relationships between 
the GEV parameters and the climate indices (Figure 4-2). They extended their analysis to 
consider how the probability of a 20-year return period precipitation event changes under 
La Niña and El Niño conditions, and show that over much of North America there is a strong 
relationship between the probability of a 20-year event and the ENSO index. They also found 
that the PDO broadly modulates extreme winter precipitation across the region, but that the areas 
with the strongest impacts are different from those for ENSO. This suggests that at least in 
certain areas, the joint influence of PDO and ENSO may be important for winter precipitation 
extremes. Bracken et al. (2015) evaluated relationships between large-scale climate regimes and 
streamflow in the upper Colorado River basin. Other authors have reported similar relationships 
between extreme flows and climate indices such as the PDO and ENSO at other locations 
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worldwide (Antico et al. 2014, Vasiliades et al. 2015, Bennett et al. 2015, Li and Tan 2015, Lima 
et al. 2015).  

Cool colors = positive values; hot colors = negative values. Data indicate that winter peak flows are 

related to ENSO cycles, which could lead to an appearance of nonstationarity in short climate records 

(after Zhang et al., 2010). 

  

Figure 4-2: Difference in winter maximum daily precipitation between El Niño and La Niña years. 

Kiem et al. (2003) and Micevski et al. (2006) investigated flood data from the east coast of 
Australia (94 stations from Queensland and New South Wales) for stationarity and concluded 
that floods are modulated by ENSO and the Inter-Decadal Pacific Oscillation (IPO). The IPO is 
derived in a manner similar to the PDO used in the Northern Hemisphere and has a similar 
multidecadal timescale. The effects of the IPO on flood magnitude for a given return period are 
magnified as one moves to higher latitudes, similar to the PDO impact in the United States. 
Corresponding shifts in the position of the Intertropical Convergence Zone (ITCZ) and the South 
Pacific Convergence Zone (SPCZ) are identified as supporting the basis for a climate-driven 
argument to explain the inter-decadal variations in the flood regime. Mondal and Mujumdar 
(2015) found that nonstationary distributions of extreme precipitation were modulated by large-
scale processes such as ENSO.  
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4.2 Mixture Models 

Although there is substantial evidence for broad correlations between flooding and large-scale 
teleconnections, flooding in many cases is driven by a much more complex mixture of 
atmospheric conditions. Smith et al. (2011) noted that floods in the eastern United States come 
from a mixture of landfall-based tropical cyclones and extratropical systems (see also Villarini 
and Smith 2010). They noted that the importance of tropical cyclones varies across the region, 
that clustering of tropical cyclone incidence is a factor, and that they can impact a large fraction 
of the sites when they occur. However, they also noted that extratropical cyclones in the 
winter/spring, coupled with orographic lifting and steering, can be significant factors in regional 
flood generation. Clustering of heavy rainfall events was analyzed using a nonhomogeneous 
Poisson process model with NAO, AMO, and ENSO climate indices as covariates. Modest 
evidence was found for the influence of these factors in modulating the incidence of extreme 
precipitation at a regional scale: the AMO, NAO, and ENSO were detected as significant in 11, 
7, and 8 stations out of 38, respectively. They noted that spatial correlation in event precipitation 
is an important consideration, and needs to be modeled formally in stochastic models of flood 
generation. A similar analysis by Villarini et al. (2013a) using Cox regression showed that the 
Pacific/North American (PNA) pattern and NAO indices as surrogates for Pacific and Atlantic 
climate variability are significant modulators of the frequency of occurrence of floods over a 
threshold, and that antecedent rainfall is an important covariate as well. They also noted that it is 
possible that these climate indices are related to the rainfall process, and that their collinearity 
with rainfall should be examined more fully. In a later study, Mallakpour and Villarini (2016) 
found that PNA was a major factor in heavy precipitation in the Central US through its impact on 
moisture transport.  

Grego and Yates (2010) considered finite mixtures of distributions for flood frequency 
estimation and used expectation maximization algorithms to estimate the mixing parameters. 
Shaw and Riha (2011) examined floods in the eastern United States in terms of the causative 
factors—annual maximum rainfall, annual maximum snowmelt, and occurrences of moderate 
rain on wet soils. They analyzed each factor separately and derived a compound distribution 
across these three types of events. This step is in the direction of connecting to climate 
mechanisms, but it is not pursued that far. Shaw and Riha (2011) found that even though there 
may be changes in the flood potential for an individual mechanism, often these may not be 
significant in the annual maximum flood frequency across the different types of events. They 
caution that it may not be fruitful to look at only GCM precipitation trends and extrapolate those 
results to conclude that humid, cold regions in high latitudes will see extensive changes in 
flooding due to increased rainfall intensities.  

A range of mathematical techniques have been used to correlate flood probability to these 
mixtures of climate drivers. Waylen and Woo (1982) and Schuster and Yakowitz (1985) were 
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among the first to propose modeling of probability density mixtures for flood frequency analysis. 
As an alternative to modeling mixtures that may arise from different climate or hydrologic 
mechanisms, Moon and Lall (1994) motivated the use of kernel quantile function estimators that 
could directly model heterogeneous quantile functions. Apipattanavis et al. (2010) presented an 
improved nonparametric flood frequency estimator using local polynomial regression applied to 
the empirical quantile function. They showed that the method is competitive with traditional 
parametric and mixture distribution methods for quantile function estimation with synthetic and 
actual streamflow data.  

5. Change Detection, Attribution, and Hydrologic 

Design Under Nonstationarity 

Changes in hydrologic processes may occur either abruptly or gradually, depending on the 
characteristics of the factors that influence those processes (McCuen 2003, Chandler and Scott 
2012). For example, changes in water regulation caused by the construction of a dam would 
abruptly change downstream hydrographs; such changes are easily measured. Similarly, ongoing 
urban development within a watershed would gradually alter the shape of resulting flood 
hydrographs over time (Vogel et al. 2011). Statistical methods have been developed to detect a 
wide range of such hydrologic changes. However, as previously discussed, it is often very 
difficult to distinguish gradual trends from LTP in hydrologic records due in part to the limited 
length of those records. It is also difficult to distinguish systematic trends, whether they are 
abrupt or gradual, from either LTP or low-frequency variations because of internal climate 
dynamics. In the following section, we review recent advances in the detection of change. 

5.1 Analysis and Detection of Change 

Kundzewicz and Robson (2004) highlighted four main tasks when examining the presence of 
changes in hydrological records: data preparation, exploratory data analysis (EDA), application 
of adequate test statistics, and interpretation of the results. Data preparation is an often 
overlooked but fundamental part of any study dealing with the detection of possible changes in 
historical records. Key factors to consider are the quality of the data, changes in measurement 
techniques or instrumentation through time, presence of gaps and missing data, and the 
frequency with which data are collected. It is also important to focus on records with long, 
preferably continuous records, to place any observed recent changes in context with what has 
been experienced in the past (Blöschl and Montanari 2010, Hirsch 2011).  

EDA uses exploratory graphical displays (Helsel and Hirsch 2002) to identify problems with the 
data, to identify slowly varying or gradual changes, and possibly spatial patterns in the data when 
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analyzing multiple time series. EDA is particularly challenging when examining changes in 
flood frequency at hundreds of locations, though Helsel and Hirsch (2002) provided several 
alternatives, including the use of scatterplot smooths, polar smooths, Chernoff faces, stiff 
diagrams, piper diagrams, and rotated scatterplots. Other attractive approaches include the 
Multiple Taper Method with Singular Value Decomposition (MTM-SVD) (Rajagopalan et al. 
1998), as well as multiwavelet analysis or principal component analysis (Helsel and Hirsch 
2002). 

After EDA, formal statistical analysis can begin. Typically, hypothesis tests for trend detection 
employ a null hypothesis that there is no trend in the time series, and an alternative hypothesis 
that there is a trend. The likelihood of rejecting the null hypothesis, when it is true, is known as 
the probability of a type I error, which is defined as α. Of critical importance for water resources 
planning is the probability of a type II error, ß, which corresponds to the likelihood that we will 
conclude there is no trend, when in fact a trend exists. Vogel et al. (2013) and Rosner et al. 
(2014) referred to the probability of type I and II errors as the probability of over- and under-
design, respectively. For example, if an upward trend in flood magnitudes exists but is not 
identified (a type II error), flood control structures might be built too small to withstand a future 
extreme event (under-design). Although we seek the probabilities of both type I and type II 
errors to be as low as possible, the short records inherent in most hydrologic investigations often 
lead to a much higher occurrence of type II errors than expected. The causes and consequences 
of type I and type II errors are discussed in more detail in Section 4.4.  

There are two general types of hypothesis tests to consider: parametric tests and non-parametric 
tests. When using parametric tests, we assume an underlying probability distribution for the 
hydrologic process of interest, which leads to a test statistic that also has a known probability 
distribution. Non-parametric tests, on the other hand, do not make assumptions regarding the 
statistical distribution of the hydrologic process of interest. The disadvantage of using non-
parametric rather than parametric methods is that they are less powerful in detecting type II 
errors than the parametric alternatives, when the parametric model is plausible (see Helsel and 
Hirsch 2002, for examples). There are cases, however, where this loss of power is minimal, with 
the large advantage associated with the nonparametric methods of having less-restrictive 
assumptions (Helsel and Hirsch 2002, McCuen 2003, Kottegoda and Rosso 2008).  

Here we focus on tests that allow for the detection of abrupt (Section 4.1.1) and slowly varying 
monotonic changes (Section 4.1.2). For those interested in the detection of cyclical changes, the 
Noether’s test (Noether 1956, McCuen 2003) can be applied.  
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5.1.1 Detecting Abrupt Changes (Change Points) 

Over the years, different hypothesis tests for change points have been proposed, as summarized 
by Reeves et al. (2007), and Beaulieu et al. (2008, 2012). Among the existing non-parametric 
change point tests, the Pettitt (1979) test is widely used in the literature. It is based on the Mann-
Whitney test and enables testing whether two samples come from the same population or not. It 
is designed to detect a single abrupt change in the mean of the distribution of the variable of 
interest at an unknown point in time. It is also possible to compute the statistical significance of 
the change, as described in Pettitt (1979). Xie et al. (2014), Mallakpour and Villarini (2015a), 
and Serinaldi and Kilsby (2015b) reviewed the general performance of the Pettitt test for its 
ability to detect change points. A generalization of the Pettitt test is represented by the non-
parametric Lombard test (Quessy et al. 2011). This test allows the detection of both abrupt and 
linear changes in the mean of the distribution of the variable of interest using the Wilcoxon score 
function. The Lombard test has been recently applied to flood and drought records (Assani et al. 
2011, Mazouz et al. 2011, Villarini and Smith 2013).  

The Bai-Perron test (Bai and Perron 2003) is a parametric test for change points that can be 
particularly useful because of its high degree of flexibility. This test assumes that the data are 
generated from a distribution belonging to the exponential family (e.g., gamma, exponential, 
Gaussian) and allows the detection of multiple change points at unknown points in time. The 
number of change points is selected using the Bayesian Information Criterion (BIC) (Schwarz 
1978) as the penalty criterion. Other proposed alternatives to the Pettitt test include the use of 
variable fuzzy sets (Li et al. 2014), and a cumulative sum (CUMSUM) approach combined with 
a bootstrap test (Li et al. 2015). These methods have been applied to rainfall and runoff time 
series from northeast China, and the former method was shown to produce similar results to the 
Pettitt test.  

The majority of the published studies examining the presence of abrupt changes in data series 
focus on changes in the mean of the distribution of the variable of interest. Much less attention 
has been given to whether abrupt changes occur in the variance of a variable of interest, even 
though changes in variance could have large impacts on water resource planning (e.g.,  if the tail 
of the distribution broadens; Katz and Brown 1992, Knox 1993, Meehl et al. 2000, Ferro et al. 
2005). Note that for many distributions, any trend in the mean of the series will imply a trend in 
the variance of the same series. For example, for a lognormal variable x, one of the most 
common probability distributions in hydrology, a simple linear trend in the logarithm of y 
implies an exponential trend in both the mean and variance of x. An exponential trend has been 
found to provide a good fit to annual maximum series of both precipitation (Gilroy and McCuen 
2012) and streamflow (Vogel et al. 2011, Prosdocimi et al. 2014). 

Perreault et al. (2000) proposed a Bayesian change point test for the detection of abrupt changes 
in both the mean and the variance under the assumption that the data come from a Gaussian 
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distribution. Villarini et al. (2009b, 2011a, 2011b, 2012; Figure 5-1) and Villarini and Smith 
(2010) applied the Pettitt test to the squared residuals with respect to a trend line to detect abrupt 
changes in the second moment of the flood peak distribution. The Lombard test can also be used 
to detect abrupt changes in the variance at an unknown point in time. USACE has developed a 
web tool for the detection of nonstationarities in annual maximum flow that uses a number of the 
statistical tests described above (Friedman et al. 2016, USACE 2017). 

Underlying synthetic data have a change in mean from 10 to 12 at count = 50. Change points are most 

commonly detected using the Pettitt test (after Villarini et al. 2009b). 

 

Figure 5-1: Impact of a change point on the trend analysis for a synthetic series of data. 

Quessy et al. (2011) highlighted some of the difficulties in detecting abrupt changes in the 
second moment. Even though changes in higher moments may have even more dramatic effects 
on the extremes, their detection is complicated by the limited sample sizes normally encountered 
in practice. An alternative approach is to examine changes in the exceedance probability of a 
nominal quantile (Jain and Lall 2000, Sankarasubramanian and Lall 2003, Khalil et al. 2007), 
allowing a direct assessment of the changes in the tail of the distribution. Overall, the detection 
of abrupt changes in higher moments has received very little attention by the hydrologic 
community, despite the large impacts these shifts may have when dealing with extremes. 
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5.1.2 Detecting Monotonic Changes 

The detection of monotonic patterns is generally performed using the Mann-Kendall and 
Spearman tests (Helsel and Hirsch 2002, McCuen 2003, Friedman et al. 2016). These are non-
parametric tests to detect the presence of temporal patterns in the records and often exhibit 
similar power against common hydrologic alternative hypotheses (Yue et al. 2002). While the 
attention here is on monotonically increasing or decreasing patterns, we acknowledge that other 
more complex patterns may better describe the data (Hall and Tajvidi 2000, Ramesh and 
Davison 2002, Mudelsee et al. 2003, Villarini et al. 2009a, 2010).  

The presence of linear trends is often tested using Pearson’s correlation coefficient and/or linear 
regression. Two often-quoted limitations of linear regression are that it only allows the detection 
of linear trends, and that the significance of the results relies on the assumption that the residuals 
from the linear model follow a Gaussian distribution. Despite these limitations, there are several 
advantages of linear regression that make it an attractive choice for the detection of monotonic 
trends (Hecht 2017): 

• If a linear model results in a plausible model of the trend, this model can potentially be useful 
for prediction purposes. 

• Even for highly nonlinear trends, ordinary, weighted, and/or generalized least squares 
regression can often provide a good approximation by employing the “ladder of powers” to 
linearize the relationship. Helsel and Hirsch (2002) provided a guide to selecting appropriate 
(and possibly different) power transformations of the variables of interest to achieve 
linearity. Suitable transformations can usually be found to ensure linearity of the regression 
model and normality of the associated model residuals, an assumption needed for statistical 
inference on model coefficients and model predictions. In this case, retransformation biases 
need to be accounted for. 

• Prediction intervals are easily computed for trend extrapolation and such intervals are of 
critical importance in water resource planning investigations (see Section 5.3 for a discussion 
of the limitations and issues associated with extending trends for predictions). 

• Analytical expressions for the probability of a type I and II errors are available, which are of 
critical importance to risk-based decision making (Rosner et al. 2014). 

• As shown recently by Hecht (2017), the use of heteroscedastic regression enables the 
development of a parsimonious model of both the mean and variance of the variable of 
interest, using only the regression model parameter estimates from the trend model of the 
mean. 

• Matalas and Sankarasubramanian (2003) provided simple analytical formulas for correcting 
for the impact of persistence on the significance of trend tests based on regression. 
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As discussed in Section 7, an understanding of changes in the annual exceedance probability 
associated with future hydrologic events is of critical importance to hydrologic design and 
planning under nonstationary conditions. Given the importance of extremes in this context, an 
alternative to linear regression is to move away from examining trends in the quantity of interest 
(e.g., discharge) in favor of trends in the quantiles and exceedance probabilities associated with 
the random variable of interest. These changes should be examined both in time and space.  

Katz (2013) argued that using nonparametric methods for trend identification and for fitting 
nonstationary extreme value distributions is inefficient because such methods are not appropriate 
for the heavy tails one expects from the theory for extremes. He argues that the nonstationary 
GEV distribution and Generalized Pareto Distribution (GPD) are attractive for nonstationary 
extreme value processes if the parameters are allowed to vary in time through an appropriate 
functional dependence on covariates (e.g., time or selected climate indices). In his examples, 
Katz considers both block maxima (e.g., annual maxima) and peak over threshold processes, the 
latter being considered through a generalized Poisson (GP) model. He argues that this is a more 
robust way of estimating trends in the full set of quantiles along with their uncertainty, than 
nonparametric alternatives. GP models were also used by Silva et al. (2014) to analyze flood data 
from northern Portugal. Similar conclusions were reached by Zhang et al. (2004), who performed 
Monte Carlo experiments comparing different methods for the detection of trends in extreme 
events. They documented greater power in detecting changes when considering the presence of 
trends in the parameters of the GEV distribution. 

Within the modeling of extremes, some studies advocate a departure from the univariate at-site 
modeling of single records of extremes with a new focus on spatial extremes. The use of max-
stable processes has received growing attention over the last few years, especially after recent 
work by Padoan et al. (2010). An appealing feature of these models is the development of a 
unified framework for simultaneously estimating the at-site parameters of the GEV distribution, 
which accounts for the dependence structure among flow series. In the hydrologic field, max-
stable processes have been recently used by Padoan et al. (2010) and Westra and Sisson (2011) 
to describe the spatial and temporal variability in annual maximum precipitation over the 
Appalachian Mountains and Australia, respectively. Davison et al. (2013) provided an overview 
of the topic with a brief overview of potential Bayesian methods. A more in-depth discussion of 
Bayesian approaches to max-stable processes is provided by Shaby and Reich (2012). Section 
5.2 provides a discussion on Bayesian alternatives to issues related to spatial and temporal 
extremes. 

5.1.3 Spatial Correlation and Significance 

A common problem in hydrology is to evaluate the statistical significance of trends in hydrologic 
variables at multiple sites in a region. Although these hydrologic variables are commonly 
correlated in space, statistical tests to detect the presence of either abrupt changes or monotonic 
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patterns rely on an assumption of independence (i.e., one must assume that there is no correlation 
between individual observations). The violation of the independence assumption has an effect on 
the statistical significance of the test results because of an effective sample size that is smaller 
than the number of observations. Cox and Stuart (1955) stated, “… positive serial correlation 
among the observations would increase the chance of significant answer even in the absence of a 
trend.’’ Different techniques have been proposed to accommodate for the potential presence of 
serial correlation, such as pre-whitening and trend-free pre-whitening (Kulkarni and von Stroch 
1995, Yue et al. 2003), or corrections to account for the effective number of observations 
(Lettenmaier 1976). Linear regression is the only trend test for which analytical expressions exist 
to account for the inflation in the statistical significance of associated tests due to persistence 
(Matalas and Sankarasubramanian 2003). Khaliq et al. (2006, 2008) provide a discussion of 
different techniques to account for the presence of serial dependence in the data.  

Both temporal and spatial correlation impact our ability to compute the true significance level 
associated with any set of multiple hypothesis tests, which is termed the field significance αf. If 
the hydrologic variable of interest at each site in a group of m total sites is independent of all the 
other m-1 sites, then the significance level α of each of the individual hypothesis tests at the sites 
in the region are easily combined, as if one performed m separate independent experiments. 
Thus, with m sites and with m independent hypothesis tests, the field significance associated with 
all m tests, αf, would be obtained from the expression αf = (1-α)m. In this case, the field 
significance represents the collective significance level associated with all m individual 
independent tests. Statisticians term such comparisons between individual tests as multiple 
comparison procedures (MCP), with the formula between α and αf, termed the Bonferroni 
procedure (Simes 1986). For a recent review of a variety of different MCPs, see Vogel et al. 
(2009).  

If the variable of interest exhibits spatial correlation, however, it is necessary to examine the 
impact of spatial correlation in the records of interest on the overall field significance associated 
with the group of tests (Livezy and Chen 1983, Douglas et al. 2000, Vogel et al. 2009, Hirsch 
and Ryberg 2012). It is intuitive that, if a statistically significant trend is detected at a particular 
location, it is more likely to be detected at close-by stations as well, because of the natural cross- 
correlation among hydrologic processes in nearby watersheds. Therefore, the inter-site 
correlation has an effect on the significance level of the trend tests by reducing the effective 
sample size. If unaccounted for, the spatial correlation would result in the rejection of the null 
hypothesis (no change) more frequently than if no spatial correlation were present. Different 
methods have been proposed to address this issue, such as the Walker’s test and the false 
discovery rate (Wilks 2006) or bootstrap methods (Douglas et al. 2000, Hirsch and Ryberg 
2012).  
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To increase the power of hypothesis tests and thus reduce the probability of type II errors, the 
most robust approach consists of multiple comparison procedures leading to an estimate of field 
significance, as discussed above. Future research is needed to address the power of alternative 
MCP procedures for their ability to detect departures from the null hypothesis, when streamflows 
exhibit both spatial and temporal correlations. Resorting to more than a single test will provide 
supporting evidence to the presence or absence of changes. If statistically significant changes are 
detected, it is then of paramount importance to understand their nature and causes, as discussed 
in the following section.  

5.2 Attribution of Change 

For hydrologic design, the ultimate goal of attribution is to improve our ability to project past 
and future changes in flood risk using both at-site and regional hydrologic information. Thus, 
once an abrupt or slowly varying change has been detected, it is important to understand what 
caused that change. For instance, is it possible to relate an abrupt change to human modifications 
of the catchment, such as the construction of a dam? Is it possible to explain the presence of a 
gradual change in terms of a slowly varying land-use change due to urbanization? Or is the most 
likely explanation related to variability in the climate system? Without this attribution, it is 
difficult to project changes into the future beyond simply extrapolating a recent trend forward in 
time.  

At this time, several methods hold promise for attributing a change in flood frequency to human 
modifications of the catchment. Some researchers have investigated the use of climate models 
with different forcings in an effort to separate the relative contribution of each of them (e.g., Pall 
et al. 2011, Kay et al. 2011). However, others (e.g., Hirsh and Ryberg 2012) have found little 
evidence of changes in flood risk due to changes in atmospheric GHG. Cunderlik and Burn 
(2004) outline an approach in which trends in discharge are related to changes in hydroclimatic 
records using cross-correlation analyses on the residuals obtained from removing trend, seasonal, 
periodic, and autoregressive components. By relating the parameters of the selected flood peak 
distribution to predictors representative of climate variability (e.g., rainfall or large-scale climate 
indices) and changes in land use/land cover (e.g., total harvested area, percentage of impervious 
surface), it is possible to assess the relative contribution of each covariate in describing the 
changes in flood magnitude and variability over time (Villarini and Strong 2014).  

Note that the development of statistical relations between flood peaks and predictors does not 
necessarily guarantee a causal link. It is therefore important to consider predictors that we would 
expect to be related to flooding, and interpret the results of the statistical modeling in light of the 
possible physical mechanisms. 
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5.3 Examples of Statistical Analysis of Change 

Over the past two decades, a number of studies have examined the issue of nonstationarity in 
both precipitation and discharge records. In this section we summarize some of this literature as 
case studies, to illustrate many of the concepts described in Section 4.1.  

5.3.1 Precipitation Records 

A number of indices of extreme precipitation can be used as the basis of a trend evaluation, 
including maximum 1-day precipitation, maximum 5-day precipitation, 99th percentile wet days, 
and others (see Table 1 in Alexander et al. 2006). The particular metrics of interest vary among 
different studies, but there is a substantial body of literature describing trends in extreme 
precipitation over the latter half of the 20th century and the beginning of the 21st century, from 
different regions of the world.  

Kunkel et al. (2013) provided a recent overview of the state of knowledge of extreme 
precipitation over the continental United States. They indicated that extreme rainfall events over 
the continental United States have generally increased since 1991 (see e.g., Figure 5-2). As 
described in Section 3, some of these regional differences in rainfall trends are likely to be 
related to large-scale circulation patterns, many of which have decadal-scale variability and 
many of which may be externally forced by anthropogenic climate changes. Other studies 
describing trends in total and extreme rainfall over the continental United States include 
Groisman et al. (2004, 2012), Groisman and Knight (2008), Peterson et al. (2008), Douglas and 
Fairbank (2011), and Villarini et al. (2011c, 2013b). Similar studies have been conducted in 
other regions of the world as well (Madsen et al. 2014, Yilmaz and Perera 2014). 

Much of the literature examines this question from the point of view of climatology, using 
definitions of ‘‘heavy,’’ ‘‘very heavy,’’ or ‘‘extreme’’ rainfall, which are different from those 
definitions commonly used by civil engineers. Bonnin et al. (2011) identified the differences in 
meaning used by the climate and civil engineering communities and examined trends in the 
observed record in the frequency of exceedances (not trends in magnitudes). Using concepts 
recognized as the basis for design of the nation’s civil infrastructure, they examined trends in the 
number of exceedances of thresholds for a variety of precipitation frequencies and event 
durations used by civil engineers. They found that the estimated trends in exceedances at 1-day 
and multiday durations were statistically significant and increasing for the Ohio River basin and 
surrounding states, but that the reverse was true for the semiarid Southwest (i.e., not significant 
and decreasing trends).  
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Figure 5-2: Trends in 1-day through 30-day extreme precipitation over the 20th century 
(after Kunkel et al. 2003). 

5.3.2 Discharge Records 

As summarized above, a large number of studies have documented increasing trends in heavy 
rainfall over large areas of the continental United States; similar studies have documented 
increases in heavy precipitation in other parts of the world, including Europe (Madsen et al., 
2014). This, however, does not always translate into significant trends in peak flood discharge 
(Madsen et al., 2014). As discussed in Peterson et al. (2013), a possible explanation for these 
differences is that medium to larger catchments (i.e., larger than 1,000 km2) tend to respond to 
rainfall events that last more than 1 day, whereas daily rainfall is the temporal scale generally 
used in rainfall studies. Another possible reason for the disconnect between rainfall and flooding 
is that many of the regions where increases in heavy rainfall have been documented have seen 
these increases primarily during seasons that do not produce flooding (Small et al., 2006).  

As documented by Hossain (2014), one of the problems associated with the detection and 
attribution of a climate change signal in the flood peak record is related to the extensive 
modification that most of the watersheds in the United States have undergone between the 19th 
and 21st centuries. These modifications are related to changes in land use/land cover and 
stormwater systems, and construction of dams and systems of upstream reservoirs, all of which 
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are superimposed on a climate change signal. For instance, changes in agricultural practice over 
the central United States and the related impacts on the hydrologic cycle have been the topic of a 
number of studies (Schilling and Libra 2003, Zhang and Schilling 2006, Schilling et al. 2008). 
Changnon and Demissie (1996) analyzed two rural catchments in Illinois and Indiana and found 
that changes in land use/land cover masked the effects that increasing precipitation would have 
on mean and peak discharge. Gebert and Krug (1996) discussed how changes in rainfall alone 
could not explain the changes in flood peaks over southwestern Wisconsin.  

The strongest signal of streamflow change in the United States has been found in urban 
catchments (Vogel et al. 2011, Barros et al. 2014). Hejazi and Markus (2009) focused on 12 
small urbanizing watersheds in northeastern Illinois and found that urbanization caused a 34% 
larger increase in flood peaks than climate variability. Villarini et al. (2009a) developed a 
nonstationary statistical model to describe the changes in magnitude and variability in the flood 
peak record of two highly urbanized basins in Charlotte, North Carolina. They used population (a 
proxy for urbanization) and rainfall as covariates to explain the changes in mean and variance in 
these flood peak records. Villarini et al. (2013c) also examined two urban catchments in the 
Chicago metropolitan area and found that increasing urbanization resulted in an increasing 
number of large flood events. Vogel et al. (2011) found large increases in flood magnitudes 
corresponding to some of the most populated areas of the country. Barros et al. (2014) found 
similar results for the southeastern region of the United States. Using data from a single 
urbanized watershed, Ogden et al. (2011) found that runoff in urbanized watersheds with a 
considerable impervious area show a marked sensitivity to rainfall rate, whereas for extreme 
rainfall events with a recurrence interval in excess of 100 years, imperviousness is relatively 
unimportant in terms of runoff efficiency and volume.  

Many of the studies examining the presence of trends in annual maximum flood peak records 
have not found statistically significant trends in watersheds without extensive changes in water 
regulation or land-use change. Lins and Slack (1999) focused on 395 stream gage stations that 
are relatively free of human modifications (e.g., construction of dams, land-use changes). While 
nearly 30% of these stations exhibited significant increasing/decreasing trends in annual median 
discharge, less than 10% of the stations exhibited a statistically significant trend in extreme (90th 
percentile) flows (Figure 5-3). Lack of statistically significant trends in flood flow was also 
documented by Douglas et al. (2000) and Small et al. (2006). Villarini et al. (2009b) focused on 
50 stream gage stations over the continental United States with a record of at least 100 years, and 
found that the presence of trends was often due to artifacts related to the presence of abrupt 
changes in the flood peak distribution. Similar results were obtained by Villarini and Smith 
(2010, 2013) and Villarini et al. (2011a), who performed detailed analyses at the regional scale, 
with particular emphasis on the eastern and central United States and Texas. Mallakpour and 
Villarini (2015b) showed that the most widespread signal of change over the central United 
States is in the frequency rather than in the magnitude of flood events. 
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Figure 5-3: Number of stream gages with statistically significant trends in different flow metrics over the 
second half of the 20th century. Note the drop in number of statistically significant trends for more extreme 
flow metrics (after Lins and Slack 1999). 

There are some regions of the U.S. for which it is possible to identify spatially consistent patterns 
of change. For instance, based on an analysis of 200 long-term (85–127 years of record) stream 
gages, Hirsch and Ryberg (2012) found decreasing trends in annual peak streamflow in the 
southwestern United States, possibly related to a drying of the region. Some areas of the 
northeastern U.S. (from the northern Appalachian Mountains to New England) have exhibited 
increasing trends in annual peak flood records (Collins 2009, Hodgkins 2010, Smith et al. 2010), 
possibly related to changes in snow pack (earlier melting and changes in the rain/snow ratio 
(Hodgkins et al. 2003). However, the spatial coherency of this signal is weaker than for the 
southwestern United States (Hirsch and Ryberg 2012).  

In addition to changes in land use, the high natural variability associated with peak flood records 
can cause issues in detecting a change, because extremes are by definition rare. Thus, trends are 
very difficult to distinguish from the persistence inherent in most flow records (Cohn and Lins, 
2005). Larger changes, on the other hand, have been detected in studies examining lower 
quantiles of the flood peak distributions. Lins and Slack (1999) found a widespread increase in 
flow quantiles, from annual minimum to median flow. Similar conclusions were reached by 
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McCabe and Wolock (2002) (see Figure 5-4), who also found that these increases were generally 
abrupt rather than gradual. They also related these increases in the 1970s to increases in 
precipitation in the eastern United States (Karl and Knight 1998).  

 
Figure 5-4: Departures from historical flow metrics over the second half of the 20th century for maximum, 
median, and minimum flows at 400 stream gaging sites. Note the increased coherence of a signal for lower-
magnitude flow events (after McCabe and Wolock 2002). 

In their review of trend studies on the European continent, Madsen et al. (2014) reported that 
several studies from regions dominated by snowmelt-induced peak flows found decreases in 
extreme streamflow and earlier spring snowmelt peak flows, likely caused by increasing 
temperature. Madsen et al. (2014) also reviewed existing guidelines in Europe on design flood 
and design rainfall estimation; only a few countries have developed guidelines that incorporate a 
consideration of climate change impacts.  
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5.4 Challenges in Hydrologic Trend Detection  

Adaptation planning in the context of flood management in a nonstationary world depends 
critically on trend detection; hence, it is important to first understand the limitations and 
concerns surrounding tests of statistical significance of trends. As summarized above, studies 
that seek to identify trends in flood series are now widespread. All of the previous flood studies 
we have reviewed have employed a null hypothesis Ho that there is no trend, and most have 
chosen an associated significance level of α = 0.05 (i.e., if there truly is not a trend, errors will be 
reported 5% of the time). This is termed a type I error, an “over-preparedness” error. The 
practical implication of a type I error in adaptation decisions for flood management is 
overinvestment in flood risk reduction measures.  

However, potentially more severe consequences may occur if a trend actually exists but is not 
identified, termed a type II error, or an “under-preparedness” error. The physical repercussions of 
a type II error could be major flood damages or public safety issues due to underinvestment in 
flood risk reduction measures. Although most trend detection problems focus on the probability 
of a type I error, the consequences of a type II error could be much more significant because they 
imply no societal response is necessary when one is actually warranted. Rosner et al. (2014) 
introduced a methodology for incorporating both types of errors into a risk-based approach to 
flood management under nonstationarity conditions (Figure 5-5). This approach is described in 
more detail in Section 7.  

  No Trend 

Ho 

Trend 

HA 

No Societal Response  

1 – α 

β 

Type II Error 
(under-preparedness) 

Societal Response α 

Type I Error 
(over-preparedness) 

 

1 – β 
Power 

Figure 5-5: Decision matrix for the general trend detection decision problem, with null hypothesis Ho and 
alternate hypothesis HA shown. α is the probability of a type I error, whereas β is the probability of a type II 
error. Modified from Vogel et al. 2013. 

Examples of papers on power studies for trend detection based on linear regression are common 
in the medical sciences (Dupont and Plummer 1990, 1998). Analytical power studies are less 
common in the water literature, although there are some notable examples (Lettenmaier 1976, 
Bowling et al. 2000, Ziegler et al. 2003 and 2005, Vogel et al. 2013, Prosdocimi et al. 2014, 
Rosner et al. 2014). Lettenmaier (1976) first introduced analytical expressions for the power of a 
hypothesis test based on an ordinary least squares (OLS) linear regression in the context of trend 
detection in water quality management. Bowling et al. (2000) performed a similar analysis to 



Floods and Nonstationarity: A Review  

30 

determine the minimum detectable difference or the smallest trend one could discern to be 
statistically significant. Another notable example is Ziegler et al. (2005) who used GCMs to 
project trends in annual precipitation on the Mississippi basin, and then performed Monte Carlo 
simulations to determine the minimum length of record that would be needed to detect trends of 
those magnitudes. They found that between 82 to 143 years would be required to detect the trend 
corresponding to type I and II error probabilities of α = 0.05 and β = 0.10, respectively. 

Fewer studies exist of the power of nonparametric trend tests. Yue et al. (2002), Onoz and 
Bayazit (2003), Yue and Pilon (2004), and Morin (2011) examined the power of the Mann-
Kendall test and other non-parametric techniques. Yue et al. (2002) performed an extensive 
analysis of the power of the Mann-Kendall and Spearman tests by means of a Monte Carlo 
simulation. They found that both tests have similar power, and that ß depends not only on α and 
the sample size but also on the variability in the records and the trend magnitude. A more general 
discussion on power and nonparametric tests can be found in Chandler and Scott (2012, pp. 55–
56), who wrote, “… power calculations typically require precise specification of the form of the 
trend as well as the distribution of the observations: therefore they are not readily adapted to the 
nonparametric tests described above [Mann-Kendall], except under some precisely specified 
parametric model that serves as a benchmark.” 

Vogel et al. (2011), Prosdocimi et al. (2014), and Rosner et al. (2014) employed a simple 
nonlinear model (fit using linear regression) to characterize trends in flood levels. More complex 
trend analyses are possible by incorporating other covariate predictors of the trend such as 
climatic indices (Kwon et al. 2008) and/or trends in other moments (Villarini et al. 2009a, 
2009b). Vogel et al. 2011 (see appendix) and Prosdocimi et al. (2014) found that a nonlinear 
model relating the logarithm of instantaneous annual maximum streamflow to its year of 
occurrence provided an excellent approximation for thousands of river gages across the 
continental United States and the United Kingdom, respectively. Even for highly nonlinear 
trends, OLS regression can often provide a good approximation by employing the ladder of 
powers to “linearize” the relationship (Helsel and Hirsch 2002). Helsel and Hirsch (2002) 
provided a good background on trend tests and how to improve their power, given the 
tremendous challenges associated with distinguishing among trends, seasonality, and persistence.  

There are also considerable challenges in distinguishing trends from natural hydrologic 
persistence (Klemes 1974, Potter 1976, Cohn and Lins 2005, Matalas and Sankarasubramanian 
2003, Koutsoyiannis 2006) (see Figure 3-1). Under LTP, abrupt changes and trends can be 
interpreted in such a way that similar events would tend to cluster, compatible with fluctuations 
over decadal, multidecadal, and longer time scales. Using this information in trend detection 
could result in a better way of characterizing patterns observed in hydrologic records 
(Koutsoyiannis 2003 and 2006, Koutsoyiannis and Montanari 2007, Lins and Cohn 2011). The 
presence of LTP is examined by computing the Hurst exponent H (Hurst 1951). The Hurst 
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exponent ranges between 0 and 1, with a value larger than 0.5 indicating LTP. Tan and Gan 
(2015) calculated Hurst exponents for a series of gaging stations in Canada and demonstrated 
strong LTP in more than half of these rivers. Several different estimators of the Hurst exponent 
have been proposed, based on the aggregated variance method, differenced variance method, the 
rescaled range statistic (R/S) method, and the Whittle method. Montanari et al. (1999) and 
Serinaldi (2010) provided a review of these different estimators.  

The decision of whether to include LTP when characterizing the temporal changes in 
observational records could have large impacts on the outcome of the analyses and interpretation 
of the results (Matalas and Sankarasubramanian 2003, Cohn and Lins 2005, Koutsoyiannis 2006, 
Lins and Cohn 2011). Cohn and Lins (2005) analyzed the influence of LTP on the statistical 
significance of observed trends for different statistical tests. Thirty-five Monte Carlo experiments 
were conducted with sample sizes ranging from 100 to 2,000 and fractional differencing values 
(d), an indicator of LTP, ranging from 0 to 0.4. The fractional differencing values were selected 
based on previous studies to ensure that the simulated populations would be representative of all 
ranges of hydroclimatical records. Multiple statistical methods were applied: (1) the OLS 
regression model was fitted and statistical tests focused on whether the fitted slope coefficient 
differed from zero, (2) two forms of the maximum likelihood (ML) approach were used to 
estimate the slope coefficient and the statistical significance was based on the likelihood ratio 
test (LRT), and (3) an adjusted likelihood ratio test (ALRT) was applied to improve the type I 
error in the presence of LTP. The tests were applied to samples without a trend as well as to 
observed surface air temperatures for the northern hemisphere. The results showed that as d 
increased, all tests were more likely to detect a statistically significant trend; however, ALRT 
provided the lowest occurrence of type I errors, and the OLS approach provided the highest 
occurrence of type I errors. Therefore, the presence of LTP can result in the false detection of a 
statistically significant trend if the wrong test is used. These results emphasize the importance of 
methods for accounting for LTP in trend testing and selecting the appropriate statistical test to 
avoid over- or under-estimating the statistical significance of a detected trend. Matalas and 
Sankarasubramanian (2003) provided analytical expressions for correcting the significance of 
trend tests based on regression for various forms of LTP.  

Lins and Cohn (2011) emphasized the importance of understanding the characteristics of long-
term hydroclimatic processes to inform water management decisions. They discussed the 
importance of selecting statistical tests that satisfy the characteristics of the data, to avoid 
inaccurate levels of statistical significance. They also showed the sensitivity of statistical tests to 
the start and end point within a data series being tested (see Figure 5-6). These issues make it 
difficult to detect nonstationarity within a data series. Therefore, Lins and Cohn (2011) 
suggested that stationarity and nonstationarity may be statistically indistinguishable in most 
scenarios. Based on these findings, they suggested that humility and caution are important 
factors in water management decision making. Another complicating factor with analyses of 
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LTP is that large sampling uncertainties are associated with the estimators of the Hurst exponent 
(Maraun et al. 2004, Rea et al. 2009), even using long flood series (e.g., more than 75 years) 
(Villarini et al. 2009a, 2011c). These difficulties in detecting values of H different from 0.5 at an 
α significance level do not allow for a clear distinction between LTP and nonstationarity. 

 
Figure 5-6: Northern hemisphere temperature trends 1856–2004. Note that the long-term trend (red line) 
may be missed if shorter portions of the record were selected (after Lins and Cohn 2011). 

6. Characterizing Functional Nonstationarity for 

Engineering Analyses 

Recall from Section 2.1 that for the purpose of water resources engineering and management, we 
introduced the concept of “functional” nonstationarity, which refers to the behavior of a data set 
(not a population) that does not appear to behave as we would expect a series of IID variables to 
behave over a limited time period. The purpose of fitting a probability distribution to annual peak 
streamflows is to make probabilistic statements about flood characteristics for a future planning 
horizon or project lifetime in a functional engineering environment. If a population is stationary 
in the statistical sense (see Section 2.1), but the data set is in the middle of a decades-long 
excursion due to internal climate dynamics, traditional frequency analysis methods need to be 
extended to consider paleoflood or other climatic information to properly constrain and/or 
interpret the estimates (See Section 5.4). Similarly, if a watershed has undergone urbanization 
over several decades, followed by restoration efforts thereafter, traditional frequency analysis 
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methods need to be extended to consider information about the impacts of such urbanization and 
restoration efforts to properly model future flood frequency relationships.  

In addition to the detection of change, methods have been developed to describe “functional” 
models of nonstationarity. One approach is to adjust a nonstationary streamflow record to 
stationary conditions (e.g., using a rainfall-runoff model to reflect changes in the watershed over 
time). A flood frequency analysis can then be applied to the adjusted record to develop a 
stationary flood frequency model for the time period represented by the model. Other approaches 
to model nonstationary flood frequency aim to model the nonstationarity found in the 
distribution parameters, moments, or the hydrologic variable of interest. Examples of both of 
these approaches are reviewed in this section.  

6.1 Adjusting a Nonstationary Record to Stationary Conditions 

USACE and others have developed methods to account for the effect of watershed changes on 
the stationarity of flood data. For example, many studies have tried to associate indicators of 
urbanization derived from existing geographic information system (GIS) and remote sensing 
(RS) sources with increased flooding7 (Beighley and Moglen 2003, Villarini et al. 2009b), but 
data constraints have often limited these studies to a few decades. Moglen and Shivers (2006) 
investigated how to adjust rural peak discharges in an urban environment based on the 
percentage of imperviousness, while others have performed greater flood frequency analyses 
based on watershed characteristics. USACE (1994) recommended the use of a rainfall-runoff 
model to adjust a nonstationary flood record to stationary conditions to account for urbanization 
within a watershed and for the addition of flood storage. A stationary flood frequency analysis 
could then be performed based on the adjusted flood record.  

Other studies describing methods to adjust nonstationary records to stationary conditions include 
Beighley and Moglen (2003), Boughton and Droop (2003), Gilroy and McCuen (2012), and Ahn 
et al. (2014). Boughton and Droop (2003) review the application of rainfall-runoff models to 
flood frequency analysis. Judging from the rapid increase in the application of rainfall- runoff 
models for flood frequency analysis, an updated review will be needed before 2020.  

6.2 Distribution Characterization 

Other approaches to model nonstationarities in flood frequency attempt to develop statistical 
models of the nonstationarity observed in the probability distribution parameters, moments, or 
the hydrologic variable of interest. Three general types of approaches are described in this 
section. In the first set of approaches (Section 5.2.1), the nonstationarity is modeled simply as a 

                                                                          
7 Vogel, personal communication, 2017. 
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function of time. These models seek to detect trends in the underlying data, generally by fitting a 
distribution or a curve through the data. In the second set of approaches (Section 5.2.2), one or 
more physical covariates are used to explain past variations in flood frequency based on our 
knowledge of the physical processes involved (e.g., urbanization, climate). Projected future 
changes in these covariates can then be used to model future changes in the hydrologic variable 
of interest. Finally, some methods (Section 5.2.3) use observational data to estimate the 
parameters of an underlying statistical distribution. Summaries and examples of all of these 
approaches are reviewed in this section.  

6.2.1 Time Varying Parameters 

Vogel et al. (2011) and Prosdocimi et al. (2014) found that a relationship between the logarithm 
of annual maximum streamflows and time can provide an excellent representation of historical 
nonstationary (and stationary) flood behavior in the United States and United Kingdom, 
respectively. They combined this simple exponential model of the mean annual flood with a 
lognormal model of the annual maximum floods to obtain a generalized nonstationary lognormal 
model. The focus of fitting such models is to simply understand historical variations in flood 
magnitudes and frequencies, not to provide extrapolations into the future. Others have found a 
simple two-parameter nonstationary lognormal (LN2) model to be useful for increasing 
understanding of risk, reliability, and return periods under nonstationary conditions (Prosdocimi 
et al. 2014, Read and Vogel 2015).  

Gilroy and McCuen (2012) fit a similar exponential model to the location parameter of the GEV 
distribution for annual maximum precipitation and applied this trend to a rainfall-runoff model 
for estimating future flood risk. Obeysekera and Salas (2014) illustrated how a modeled trend in 
the location parameter of the GEV distribution for flow could be used to estimate future design 
flood magnitudes and uncertainty for Assunpink Creek in New Jersey (Figure 6-1). It is 
important that the statistical models that represent changes in the distribution moments or 
parameters are credible in a statistical sense, so that proper statistical inference can be performed, 
such as inclusion of prediction intervals, statistical significance testing of model parameters, as 
well as estimates of the probability of type I and II errors (Hecht 2017).  
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Figure 6-1: Schematic showing how a modeled trend in the location parameter of the GEV distribution can 
be used to project future probability of design flood magnitude over the lifetime of an infrastructure project 
(after Obeysekera and Salas 2014). 

Generalized software packages are now available for selecting and fitting nonstationary flood 
frequency distributions (Martins and Stedinger 2000, Villarini et al. 2009a and 2010). Stedinger 
and Griffis (2011) presented extensions of the Log Pearson III distribution with time-dependent 
parameters, including mean, variance, and skew. They also compared a flood distribution with a 
trend term and a stationary low-order autoregressive moving average (ARMA) process. The 
rationale is that many hydrologic sequences exhibit systematic deterministic trends as well as 
stochastic persistence due to natural processes. Although the use of time-varying parameters of a 
probability distribution is simple mathematically, Stedinger and Griffis (2011) emphasized that it 
is entirely unclear how to project trends into the future. They also noted that flood distributions 
can also be conditioned on climate indices, such as ENSO, so that in any given year the flood 
distribution conditioned on a climate index may differ from the unconditioned flood risk.  

Strupczewski and colleagues discussed two different approaches to incorporate nonstationarity 
into flood frequency modeling (Strupczewski and Kaczmarek 2001, Strupczewski et al. 2001a, 
2001b). These methods include the identification of distribution and trend (IDT) method, in 
which either linear or parabolic time-dependent functions are fit to the first and second moments 
of a probability distribution (Strupczewski et al. 2001a); and the weighted least squares (WLS) 
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method, which assumes both the mean and variance are time dependent and the functional form 
of the change in the variance is calculated (Strupczewski and Kaczmarek 2001). In both of these 
methods, the optimal combination of distribution and trend functions is identified based on the 
Akaike Information Criterion (AIC).  

Strupczewski et al. (2001b) compared the IDT and WLS methods and applied each method to 39 
flood records from Polish rivers to evaluate nonstationarity. Four classes of time trends were 
analyzed for the WLS method, including (1) a trend in the mean, (2) a trend in the standard 
deviation, (3) a trend in both the mean and standard deviation related by a constant coefficient of 
variation, and (4) an unrelated trend in both the mean and standard deviation. Trend models 2 
and 3 were the optimal models for the majority of the flow records studied. In addition, a 
comparison between models 1 and 2 suggested that incorporating a time-varying standard 
deviation in a trend model is more important than incorporating a time-varying mean, at least for 
the flood records analyzed. For the IDT method, the lognormal distribution was most commonly 
selected as the best fitting distribution, followed by the Log Pearson III distribution. The results 
showed that the distribution selection noticeably influenced the trend estimated by the ML 
method. Comparison between the two methods suggests that different trend models may be 
identified for the same records. The overall results showed a decreasing trend for both statistical 
moments in the majority of flood records analyzed.  

Cunderlik and Burn (2003) proposed a second-order, nonstationary pooled flood frequency 
analysis. The method divided the nonstationary pooled quantile function into two components: 
(1) a local time-dependent component, and (2) a regional time-independent component, based on 
the assumption of second-order nonstationarity. A local trend analysis of the time-dependent 
components was conducted. Regional changes were also assessed based on a regional trend 
analysis conducted through a regional bootstrapping algorithm. The ability of the method to 
detect changes in the location and scale parameters was assessed through a Monte Carlo 
experiment. The method was applied to homogeneous catchments in the mountains of southern 
British Columbia. O’Brien and Burn (2014) extended this method to evaluate spatially dependent 
trends in annual maximum streamflow for different regions of Canada. 

Cunderlik and Ouarda (2006) defined the components of a regional nonstationary flood-duration-
frequency model. Time-dependent model parameters were identified on a regional basis through 
a linear trend analysis. The model assumes temporally and spatially constant nonstationarity and 
can be used to estimate future flood quantiles. The model was applied to a hydrologically 
homogeneous region in Quebec, Canada. The results showed that significant bias in flood 
quantiles may result if nonstationarity is ignored. 

Roth et al. (2012) presented a GEV/GPD-based approach to modeling regional peak over 
threshold processes with time-varying parameters. They applied the method to seasonal gridded 
daily precipitation extremes in the Netherlands and noted an increasing trend in the incidence of 
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threshold crossings. Cheng and AghaKouchak (2014) used a Differential Evolutionary Monte 
Carlo algorithm to model differences in precipitation intensity-duration-frequency (IDF) curves 
from historical precipitation records under stationary and nonstationary assumptions and 
demonstrated that ignoring nonstationarity in IDF curves can substantially underestimate the risk 
of extreme events.  

6.2.2 Covariate Analyses 

Villarini et al. (2009a, 2010), López and Francés (2013), and Villarini and Strong (2014) used 
the Generalized Additive Models for Location, Scale, and Shape  (GAMLSS) parameters to 
model nonstationary time series based on covariates. GAMLSS is a flexible modeling tool for 
time series under nonstationary conditions. It can be applied for a variety of distributions and 
models multiple distribution parameters simultaneously (e.g., location, scale, or shape 
parameters of a GEV distribution). Likewise, the user can select different functions to model 
each parameter, such as a linear, nonlinear, parametric, and/or additive nonparametric function 
(Villarini et al. 2009a, 2010).  

Villarini et al. (2009a) developed a flood-frequency analysis framework based on the semi-
parametric additive formulation of GAMLSS. Four two-parameter distributions were analyzed: 
(1) Gumbel, (2) gamma, (3) lognormal, and (4) Weibull. The parameters were modeled as a 
function of time based on the cubic spline smoothing technique, in which the cubic splines were 
optimized based on AIC and BIC. Population density and urbanization were added through a 
stepwise approach and assessed with BIC to determine whether the covariates improved the 
model. The method was applied to annual maximum peak discharge records for Little Sugar 
Creek in Charlotte, North Carolina. The results showed that population density and rainfall were 
significant covariates for the location parameter, while population density was a significant 
covariate for the scale parameter. Villarini et al. (2010) used a similar approach to assess the 
importance of AMO, NAO, and the Mediterranean Index on seasonal rainfall and temperature in 
Rome, Italy. The results showed that the Mediterranean Index was a statistically significant 
predictor regardless of the season, and the NAO was a statistically significant predictor for the 
winter season. 

Villarini and Strong (2014) used the GAMLSS method to describe the changes in discharge 
(from low to high flow) in an agricultural watershed in Iowa. They used rainfall and combined 
harvested corn and soybean acreage as predictors and showed that the entire discharge 
distribution can be well characterized by these simple models. These models were then used by 
Villarini et al. (2015) as a way of projecting changes in discharge over this area. Other 
applications of the GAMLSS method include Xiong et al. (2014) and Zhang et al. (2014, 2015). 
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Figure 6-2). The results showed that the GML performed better than the ML method for the 
studied cases with respect to bias and the root mean squared error of design flood quantiles. El 
Adlouni et al. (2007) recommended additional research be conducted in the future, including (1) 
perform a distribution that depends on more than one covariate, (2) evaluate  

other statistical distributions and 
different nonstationarity structures 
such as trends in the variance of the 
series (scale parameter), and (3) 
develop a new framework for risk 
assessment in the case of 
nonstationarity. 

6.2.3 Bayesian Methods 

Bayesian methods seek to 
estimate the parameters of an 
underlying distribution based on the distribution of observed values. Bayesian methods are well 
suited to integration of prior information concerning the behavior of probability distribution 
parameters, including covariate information. They integrate our knowledge of prior uncertainty 
of an event with our current observations to create an informed opinion balanced by the two.  

Kwon et al. (2008) demonstrated a hierarchical Bayesian climate-informed flood frequency 
analysis model dependent on multiple factors that affect extreme flood events in Montana, 
including sea surface temperature (SST), predicted GCM precipitation data, climate indices, and 
snowpack depth. The climate information was implemented to update estimates of probability 
distribution parameter values for the Gumbel distribution, which was used to represent annual 
maximum flood data. The MCMC algorithm was used to simulate the updated flood risk 
prediction parameters based on climate conditions. The method was applied to the Clark Fork 
River in Montana to estimate the 1% exceedance flood from 1930 to 2005. The results showed a 
statistically significant link between the peak discharge and the SST indices, snowpack depth, 

El-Adlouni et al. (2007) demonstrated a quantile estimation method for the GEV distribution in the presence 
of nonstationarity. They assumed parameters are either time dependent or dependent on other covariates. 
Parameter estimation was done with the generalized maximum likelihood (GML) estimation method, 
developed by Martins and Stedinger (2000). The GML method is similar to the ML estimation method; 
however, prior information is integrated into the shape parameter for the GML method. The Markov chain 
Monte Carlo (MCMC) method was used to generate estimators for the GML method. El-Adlouni et al. (2007) 
conducted a simulation study to compare the performances of GML and ML methods based on four GEV 
models: (1) stationary GEV model, (2) nonstationary case where the location parameter is linearly dependent 
on covariates, (3) nonstationary case with quadratic dependence on covariates, and (4) nonstationary case 
where both the location and scale parameters have linear dependence on covariates. The covariates analyzed 
included time and the Southern Oscillation Index (SOI) ( 

 

Figure 6-2: Relationship between annual maximum precipitation 
and the SOI for Southern California (after El Adlouni et al. 2007). 
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and GCM seasonal precipitation data, which suggests that climate indicators can be used to 
predict flood risk. 

Renard et al. (2006a) proposed a regional flood frequency model with time-varying parameters 
for a homogeneous region to improve trend detection through appropriate pooling of data from 
multiple stations in the region. A Bayesian framework was used to develop posterior probability 
distributions for the parameters and carry uncertainty information across the model chain. 
Renard et al. (2006b) used a Bayesian framework to account for nonstationarity in extreme 
events. Three probabilistic models were demonstrated: (1) stationary, (2) step change, and (3) 
linear trend. Four extreme value distributions were discussed: (1) exponential, (2) generalized 
Pareto, (3) Gumbel, and (4) GEV. Regional prior knowledge was used to develop prior 
distributions. Posterior distributions were calculated from the prior distributions and available 
data on extreme events. Frequency analyses were developed for peak-over-threshold extreme 
events, which take into account uncertainty in the prior and posterior distributions. 

Lima and Lall (2010) developed a hierarchical Bayesian model to quantify the uncertainty in 
hydrologic scaling relationships as well as potential nonstationarity within data. Bayes’ theorem, 
combined with watershed characteristics, was used to determine distribution parameters for 
ungaged sites or sites with small data samples. The Gumbel distribution was selected to represent 
annual maximum flood series. For the prior distribution, a log-log linear relationship was 
assumed between the scale and location parameters and drainage area based on empirical as well 
as physical modeling results. The MCMC method was then used to simulate values for the 
variables in the posterior distribution. The method was applied to 40 reconstructed inflow series 
from 40 hydropower sites in Brazil. The results showed that the model successfully estimated 
parameter values for sites not included in the development of the model. To account for 
nonstationarity, the model was modified to assume that all of the data used to estimate the time-
varying parameters come from the same distribution and are stationary; however, additional 
variation that is dependent on time can be incorporated based on a hierarchical model. The 
random variation may be purely random, if the data are stationary, or may show a trend in time. 
Lima and Lall’s results showed a statistically significant trend in the added variation, which 
suggests that nonstationarity exists within the data. Lima and Lall (2010) commented that an 
extension of this study would include climate predictors or trend-informing variables within the 
developed model to provide forecasting capabilities. 

Ouarda and El-Adlouni (2011) used a Bayesian approach to nonstationary flood frequency 
analysis. The authors considered different GEV distribution models with location and/or scale 
parameters as functions of time or low-frequency climate indices. The functions that were 
considered were linear or quadratic. The GML method was used to estimate the nonstationary 
parameters, and a Beta distribution was used as the prior distribution for the model parameters. 
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The MCMC method can be used to estimate the empirical posterior distribution of the parameter 
vector and the marginal distributions of the parameters.  

Renard et al. (2013) provided a comprehensive example of the application of Bayesian and 
hierarchical Bayesian models to the estimation of at-site and regional nonstationary probability 
distributions for climate extremes. Spatial copulas are used to model regional dependence and a 
strategy for inference across space and time using covariates is offered. Objective and subjective 
priors for the Bayesian estimation for the stationary case are addressed, as are hierarchical 
Bayesian regression formulations for estimating regional flood/precipitation frequency in the 
presence of a finite set of covariates. The use of MCMC methods for parameter estimation is also 
clarified. Examples for monotonic and step trend analysis in this framework, as well as 
prediction using covariates, are provided.  

Gelati et al. (2010) developed a method to stochastically model nonstationarity within runoff 
time series. The method consists of a Markov-modulated autoregressive model with exogenous 
input (MARX) to produce runoff based on climate conditions. The method was applied to inflow 
time series for the Daule Peripa reservoir in Western Ecuador, where El Niño results in high 
SSTs and heavy rainfall events. The climate state is determined based on a first-order Markov 
chain. The current climate indices are used to determine the state transition probability, and the 
state transition probability formula contains a nonstationary component modeled by the kernel of 
a multivariate Gaussian distribution. Inflow anomalies are then modeled through an 
autoregressive model in which the parameters are dependent on the generated climate state. 
Multiple ENSO indices were analyzed to identify the indices that are most correlated to the 
inflow time series. The model components were selected based on the BIC. The results showed 
that the MARX model successfully simulates positive inflow anomalies during El Niño events. 
However, the model is unable to simulate significant decreases in inflow anomalies, most likely 
because the ENSO indices were weakly correlated with low-inflow anomalies for the reservoir.  

6.3 Using Historical Trends to Project Future Trends 

It is difficult to assess whether an observed historical trend is truly a monotonic trend that will 
continue into the future, or whether it is part of a multidecadal episodic pattern with only the 
upward or downward leg apparent in the data. Trends can also be confused with change points 
(Khaliq et al., 2006) and can be confounded by both short- and long-term natural hydrologic 
persistence (Cohn and Lins 2005). The presence of statistically significant trends and/or change 
points is often dependent on the time period used in the analysis. Thus, while some methods may 
appear successful for modeling observed changes in the distribution of flood series, they should 
be used with great caution when projecting future changes.  
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For example, the time-varying moments approach consists of modeling changes in the 
distribution parameters over time based on observed records. However, extrapolating these time-
dependent models to a future design year requires the assumption that factors influencing the 
data, such as climate change and urbanization, will continue to have the same effect under future 
conditions. This may not be a realistic assumption, as land-use changes alone can occur 
gradually or abruptly over time. The incorporation of covariates enables a more realistic 
representation of changes in flood characteristics to be represented by changes in specified 
indices, such as climate and urbanization indices. Therefore, knowledge of future conditions for 
these indices provides a more realistic approach for projecting changes in flood conditions.  

The covariate models reviewed here are often based on urbanization indices and possibly other 
indices linked to climate patterns such as ENSO and PDO. As described in Section 3, studies 
have linked ENSO and other patterns with an increased or decreased probability of flooding 
when the climate pattern is in a particular phase. The conditional probability of flooding for a 
given climate index can be used in a covariate analysis. Such models may be directly useful for 
planning and operation of flood-control facilities, and for incentivizing change through the 
pricing of financial instruments such as flood insurance rates for business loss of use. For design 
purposes, the use of climate covariates could improve estimates of the long-term variations in 
flood risk, including the potential persistence attributes. A stochastic simulation model using the 
climate variables could then inform the over-design/under-design probabilities for floods through 
a better characterization of the estimation uncertainty and its persistence.  

6.4 Incorporating Paleoflood Information  

In many cases, historical records may be inadequate for detecting nonstationarities in hydrologic 
variables. This is particularly true for the extreme, low-probability events that are commonly of 
greatest interest for hydrologic design. To fill these gaps in historical records, paleohydrologic 
information can often be used to inform decision making.  

USACE developed guidance for incorporating paleoflood information into hydrology and 
hydraulics decision making (USACE 2014). In general, this guidance suggests that it is 
appropriate to use paleoflood information when the return period of interest is more than twice as 
long as the available hydrologic records and identifies regions where this information is 
appropriate for use. A number of studies have outlined ways to use paleoflood information for 
reconstructing discharges prior to gaging records (Stedinger and Baker 1987, Baker 2008). For 
example, geologic deposits such as gravel terraces and slack-water deposits can be used to 
estimate the extent and/or the magnitude of paleofloods. Provided that this information is 
appropriately applied, this information can be used to increase the effective length of the 
hydrologic record. 
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In addition to the flood records preserved in geologic deposits, proxy records from tree rings 
(dendrochronology) have shown significant promise for extending hydrologic records beyond the 
observational record. Razavi et al. (2015) described a method for evaluating regional consistency 
in growth history from tree rings, which they propose as a proxy for hydrologic variability. 
Although this information may not be used directly for estimating changes in hydrologic 
parameters of interest, their analysis demonstrates that historical variability in hydrology can be 
substantially greater than what is preserved in observational records. Furthermore, this analysis 
demonstrates that although streamflow or other hydrologic parameters may appear nonstationary 
from short-term records, a paleo perspective may demonstrate longer term stationary with a 
larger variance. 

Caution should be exercised, however, when applying paleoflood information where channels 
and watersheds have not remained stable over time. Additional details and references are 
provided in USACE (2014).  

7. Projections of Future Change 

Numerous sources of change can affect future hydrologic risk. Among these are changes to land 
cover, land use, population, and climate that impact hydrology. If these future conditions can be 
adequately characterized, projections of changes to the hydrologic system can then be linked by 
physical system models to directly estimate future flood potential over a given time horizon. 

7.1 Land Use and Population Projections 

Changes in land use are known to alter the hydrologic regimes of watersheds. Deforestation 
(Brath et al. 2005) as well as urbanization (Wheater 2006) can increase the magnitudes of floods, 
given similar rainfall inputs. Many municipalities produce projections of demographics within 
the context of their long-range planning efforts. Such projections can be used to estimate future 
urbanization in regions of interest. These projections can be coupled with projections of land-use 
change (Veldkamp and Lambin 2001) to make quantitative projections of future land conditions.  

There are also more generalized approaches to projecting land-use changes, and various models 
that can be employed to assess future systems. For example, the U.S. Environmental Protection 
Agency’s (EPA) Integrated Climate and Land-Use Scenarios (ICLUS) project provides 
projections of U.S. population growth and economic development that can be used to bracket 
future land-use changes in different regions of the U.S. (U.S. EPA 2009). These ICLUS 
scenarios were originally developed to be consistent with the Intergovernmental Panel on 
Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) storylines. For each 
storyline, mathematical and statistical models were used to simulate migration of populations 
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within the United States, and associated changes in impervious surface area resulting from 
residential development (U.S. EPA 2009) (Figure 7-1).  

 
Source: U.S. EPA, 2009. 

Figure 7-1: ICLUS projected change in impervious surface area based on SRES A1 storyline. 
(U.S. EPA 2009).  

7.2 Climate System Projections 

The climate science research community regularly combines its work in a series of experiments 
to test and explain current representations of climate processes in the global Coupled Model 
Intercomparison Projects, the current version of which is the fifth (CMIP5) (Taylor et al. 2012). 
The GCMs exercised in CMIP5 were initialized with outputs from integrated assessment models 
using storylines of future global socio-economic changes to derive future levels of GHGs and 
radiative forcings.  

The scale at which GCMs operate are coarse compared to the scale of flood-generating 
atmospheric, topographic, and orographic conditions that underlies observations (Dettinger et al. 
2004, Dettinger 2005, Maurer 2007, Cayan et al., 2008a, 2008b). Downscaling methodologies 
can be employed to simulate finer scale processes important to the generation of precipitation 
and flooding, using a variety of analytical and modeling techniques (Wood et al. 2004, Wigley 
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2004, IPCC 2007, Brekke et al. 2009). The two primary categories of downscaling techniques 
are statistical and dynamical downscaling: 

1. Statistical downscaling. In statistical downscaling techniques, large-scale climate features 
generated by GCM hindcasts are related statistically to historical finer scale on-the-ground 
weather observations. The statistical relationships developed from these historical 
comparisons are assumed to hold true for future climate conditions, which allows coarse, 
future GCM outputs to be translated into finer scale projections. Although some authors have 
challenged the assumption of time invariance in the bias correction (Velazquez et al., 2015), 
statistical downscaling methods have been applied in studies of nonstationarity in hydrology 
(e.g., Wood et al. 2004, Maurer et al. 2010, Abatzoglou and Brown 2012, and Pierce et al. 
2014). 

2. Dynamical downscaling. In dynamical downscaling, fine-scale physical models of the 
region of interest are modeled using regional climate models (RCM). The boundary 
conditions for these regional models are driven by coarser scale GCMs. This approach 
directly represents local terrain and weather processes for the region of interest. Some 
examples include Moglen and Vidal (2014), who employed a suite of GCM/RCM pairs to 
estimate changes in precipitation intensity and impacts on stormwater design for the 
Washington, DC, area.  

Climate projections and downscaling are rapidly evolving at this time. Practitioners must 
carefully assess the particular methods and their applicability to the particular water resources 
management planning and engineering problems being addressed.  

7.3 Linking Projections to Hydrologic Risk 

The flood-generating information available from climate models includes a variety of hydrologic 
information in addition to temperature and precipitation. This information, coupled with 
information about land surface conditions and other changing conditions, can be evaluated 
through hydrologic modeling to gain insight into future flood magnitudes. Various 
methodologies and model techniques have been employed (Cameron et al. 2000, Hirabayashi et 
al. 2008, Raff et al. 2009, Das et al. 2011). These methods often rely on well-calibrated models 
for the area of interest, which can include the Variable Infiltration Capacity (VIC) model 
(Maurer et al. 2002, Wood et al. 2005, Wood and Lettenmaier 2006), the topography-driven 
hydrologic model (TOPMODEL), or the National Weather Service (NWS) River Forecast 
System Sacramento Soil Moisture Accounting (NWSRFS-SAC-SMA) model (Burnash et al. 
1973). Similarly, land-use studies have also used proven hydrologic tools (Brath et al. 2005), and 
current federal guidance within the USACE provides a basis to employ rainfall-runoff analysis 
when land use can be projected (USACE 1994). Additional work is ongoing to evaluate the 
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effects of differences in models and model parameterizations on routed climate hydrology 
(Mendoza et al. 2014, Mizukami et al. 2014, Newman et al. 2015a). 

Many of these hydrologic models have been shown to accurately reproduce observed flood 
frequency curves for an antecedent period (Raff et al. 2009, Das et al. 2011). It is, of course, 
unknown how well these models reproduce future flood potential because there is no viable 
means of validation today.  

8. Use of Functional Nonstationarity for Risk-Based 

Engineering Design 

For USACE, the ultimate goal of characterizing nonstationarity in historical and future flood 
distributions is to use this information to inform engineering design and minimize flood risk. In 
many cases, steps can be taken to achieve this goal regardless of whether the detection or 
attribution of change has been perfectly characterized. In this section we describe the practical 
applications of nonstationarity analysis for risk-based engineering design.  

8.1 Probabilistic and Risk-Based Approaches to Hydrologic Design  

To provide a review of current probabilistic and risk-based approaches to hydrologic design 
under nonstationary conditions, it is necessary to first provide a background and nomenclature 
corresponding to existing approaches commonly used for stationary analyses. Nonstationarity 
introduces additional uncertainty into the process of decision making, and we show that most 
existing approaches may be adapted for use under nonstationary conditions.  

Traditional probabilistic approaches for defining risk, reliability, and return periods under 
stationary hydrologic conditions assume that extreme events arise from a serially independent 
time series with a probability distribution whose moments and parameters are fixed. Most 
existing hydrology texts and handbooks provide a review of hydrologic design procedures 
assuming stationary conditions. Normally, hydrologic design is based on some random variable 
x, with stationary probability distribution function (pdf) denoted by fx(x), and cumulative 
distribution function (cdf) denoted by Fx(x). Consider some hydrologic design problem in which 
a structure is built to protect against an event with an annual nonexceedance probability, p=Fx(x). 
The design event for such a structure is computed as simply the inverse of the cdf so that the 
design event is the pth quantile of x denoted as xp, which is the value of x with nonexceedance 
probability p. Under stationary conditions, the nonexceedance probability p, and its converse, the 
exceedance probability q = 1-p, are both constant in time. Under nonstationary conditions, the 
sequence of future exceedance probabilities, corresponding to the probability of a flood 
exceeding a fixed threshold design event, is likely to change. Fuller (1914) and Gumbel (1941) 
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first introduced the idea of the average return period. We emphasize here that in spite of the 
widespread usage of return period nomenclature in hydrology, there are good reasons to temper 
its use as a metric of communicating flood risk (Serinaldi 2015, Read and Vogel 2015). 

8.2 Key Concepts in Hydrologic Design Under Stationary Conditions 

8.2.1 Reliability 

The concept of reliability is one of the most widely used design criteria in water resources. In 
their now classic paper introducing the concepts of reliability, resilience, and vulnerability to the 
field of water resources, Hashimoto et al. (1982) defined reliability as the probability or 
likelihood that a system remains in a satisfactory state. Reliability is usually defined as the 
opposite of risk or probability of failure, which we have defined above as the exceedance 
probability of an event q. Thus, if the annual risk or probability of failure is defined as q, then the 
annual reliability Ra = 1-q = p. Hashimoto et al. (1982) emphasized that neither risk nor 
reliability reflects the consequences of an extreme event. The notions of resiliency and 
vulnerability are needed to reflect the consequences associated with an extreme event. 

It is very important to distinguish between the various definitions of reliability and risk in the 
literature. Most hydrology textbooks contain expressions that relate the reliability of a water 
project over an n-year planning horizon, Rn, to its annual reliability Ra, using the fact that 

n
an RR  . Risk of failure over an n-year period is related to the design average return period Tavg 

  navgn TRisk 111  . The relationships between the annual reliability and the reliability over 

an n-year planning period were first introduced by Gumbel (1941) and Thomas (1948) and 
further analyzed by Yen (1970). Those nonparametric relationships depend on the fundamental 
assumption that flood flows are IID variables. These relations are in widespread use as evidenced 
by their inclusion in hydrology handbooks (Chow 1964, IACWD 1982, Stedinger et al. 1993, 
Tung 1999), and in many textbooks (Bras 1990, Viessman and Lewis 2003, Mays 2005) and 
journal papers (Gumbel 1941, Thomas 1948, Yen 1970, Wigley 2009, Salas and Obeysekera 
2013). 

8.2.2 Failure Risk 

Analogous to the conditional and unconditional return periods discussed earlier, the failure risk 
Riskn can be defined using either a conditional or an unconditional approach. Fernandez and 
Salas (1999) and Douglas et al. (2002) used a two-state Markov model to derive expressions for 
the unconditional n-year failure risk Riskn, for events that exhibit serial persistence. Similarly, 
Sen (1999) used a two-state Markov model to derive expressions for the conditional n-year 
failure risk Riskn, for events that exhibit serial persistence.  
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8.2.3 Risk-Based Decision Making 

Risk-based decision making (RBDM) is a 
well-established methodology that 
determines appropriate levels of 
infrastructure investment based on the 
expected damages avoided versus the 
cost of the infrastructure required to 
avoid them (USACE 2000, Tung 2005, 
Yoe et al. 2017). Figure 7-1 illustrates 
typical expected costs versus net benefits. 
A RBDM process may lead to protection 
against an event either larger or smaller 
than an event with a specified 
nonexceedance probability. 

Yoe et al. (2017) present a number of 
qualitative and quantitative approaches to 
performing risk-based decision making 
for water resources, among which are 
multicriteria decision analysis, fault trees, 
event trees, scenario approaches, expert 
elicitation, and Bayesian approaches. 
Nonstationarity can increase the complexity of decision processes and require some adjustments. 
However, numerous approaches have been taken depending on the decision, its consequences, 
and the quality of the underlying data (e.g., Borgomeo et al. 2014, Rosner et al. 2014, Spence 
and Brown 2016).  

8.3 Methods for Hydrologic Design Under Nonstationarity–

Probabilistic Approaches 

Compared to the rich literature on frequency analysis of extremes under nonstationary conditions 
described in the Sections 4–6, extension of the traditional hydrologic notions of risk, and 
reliability to nonstationary conditions have received little attention in the water resources 
literature. Olsen et al. (1998) first described ways to apply the theoretical properties of the 
hydrologic design indices discussed in the previous section to nonstationary conditions. He 
extended the ideas of Wigley (1988, 2009) with a more rigorous mathematical treatment. Several 
investigators have sought to extend the results of Olsen et al. (1998) to nonstationary conditions. 
Cooley (2013) provided an overview of the various definitions of risk and return period 

 

 
Figure 8-1: The risk-based design method for flood 
management (after Tung 2005). 
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introduced by Olsen et al. (1998). Salas and Obeysekera (2013) and Read and Vogel (2015) 
provided further extensions to the work of Olsen et al. (1998) and Cooley (2013).  

8.3.1 Exceedance Probability of Design Events Under Nonstationary Conditions 

Recall from the previous section on stationary methods that we defined the annual 
nonexceedance probability associated with a particular flood event as p = Fx(x), along with its 
associated exceedance probability q = 1-p. If flood magnitudes are nonstationary and increase 
(decrease) through time, the exceedance probabilities q will correspondingly increase (decrease) 
over time to form the series q1, q2, q3, …qt. Under nonstationary conditions, the time to the 
occurrence of the next flood T, forms a nonhomogeneous geometric random variable, which is 
completely analogous to the homogeneous geometric variable under stationary conditions.  

Salas and Obeysekera (2013, 2015) point out that two separate cases must be described 
independently, one in which magnitudes of floods are increasing and one in which they are 
decreasing. The expressions given by Olsen et al. (1998) and Salas and Obeysekera (2013, 2015) 
for the expected return period and the risk over the planning horizon under nonstationary 
conditions are far more complex than the analogous expressions under stationary conditions. In 
particular, there are significant computational challenges associated with the resulting 
summations. To reduce such computational burdens, Mandelbaum et al. (2007) introduced the 
nonhomogeneous geometric probability distribution within the context of birth and death 
processes. They provide a convenient recursive expression for computing the nonstationary 
nonexceedance probability F(t) from F(t-1). Mandelbaum et al. (2007) also showed how their 
recursive expression can be used to define the structure of future sequences of nonexceedance 
probabilities that arise from various structures of the pdf f(t) and cdf F(t). A promising area of 
research might be to explore the various structures of future sequences of exceedance 
probabilities qt, which arise from various hydrologically realistic nonstationary flood frequency 
models. For example, if one substitutes the pdf and cdf corresponding to a realistic nonstationary 
flood frequency model, what form do the resulting series of exceedance probabilities take? 

8.3.2 Risk and Reliability Under Nonstationary Conditions 

Relationships among the annual failure risk q, the n-year failure risk Riskn, and the annual 
reliability Ra described earlier, are in widespread use in hydrology under stationary conditions. 
Thus one expects that analogous relationships would be useful under nonstationary conditions. 
Salas and Obeysekera (2013) provided expressions for the risk of no failure over the first n years, 
termed the n-year failure risk under nonstationary conditions. Read and Vogel (2015) described 
such general relationships for the case of a nonstationary lognormal model. It should be of 
considerable interest for future research to explore the behavior of the n-year failure risk and the 
n-year reliability under various plausible nonstationary models of flood frequency. Such analyses 
could help us better understand the risk posed by floods under nonstationary conditions. 
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8.4 Risk-Based Approaches to Flood Management Under 

Nonstationary Conditions  

Flood management decisions in a nonstationary world are inherently sequential decisions that 
depend on the uncertainty inherent in future projections of flood scenarios and their 
corresponding consequences. There are numerous approaches to adaptation planning under both 
uncertainty and nonstationary conditions that do not depend on probabilistic approaches 
(Herman et al. 2015). Fiering and Matalas (1990) provided one of the earliest examples of a 
sequential statistical decision process for evaluating various alternatives in the context of 
nonstationarity due to climate change. Chao and Hobbs (1997) gave a brief history of decision 
analysis applications to climate change and applied a mathematical version of a decision tree, 
known as a stochastic dynamic program, to evaluate breakwater adaptation to possible climate 
change impacts on Lake Erie. Hobbs et al. (1997) applied a decision-tree approach to water 
resources management under climate change. More recently, staged adaptation strategies have 
been considered, which offer much more flexible and adaptive responses to potential future 
climate change (Gersonius et al. 2013, Haasnoot et al. 2013, Kirshen et al. 2014).  

A critical challenge in the application of decision trees to the problem of RBDM in a 
nonstationary world involves estimating the necessary probabilities associated with various 
outcomes (branches of the decision tree). Hobbs et al. (1997) demonstrated the use of a Bayesian 
approach to analyzing the necessary probabilities in the decision tree for evaluating alternative 
adaptation strategies for climate change for the Great Lakes. Similarly, Manning et al. (2009) 
described a Bayesian analysis consisting of aggregating predictions from suites of model 
predictions from GCMs or RCMs. 

Rosner et al. (2014) introduced a RBDM decision-tree approach for use in a nonstationary world, 
with the outcome probabilities based on type I and type II error probabilities associated with the 
outcomes for the statistical hypothesis test for trend. Their approach integrates the uncertainty 
inherent in the trend detection process with the natural uncertainty and economic analysis 
associated with the various infrastructure alternatives under consideration. The resulting process 
enables the decision maker to ask the question when enough information is available to warrant 
making a particular flood management adaptation decision. 

8.5 Methods for Hydrologic Design under Nonstationarity–Non-

Probabilistic Approaches 

In some situations, there may be insufficient information to incorporate the probabilities of 
foreseeable future hydrologic conditions into long-term flood planning and management 
decisions. In some cases, the possible failure of infrastructure due to rare events may be so 
catastrophic that a single worst-case scenario is predicted and then planning decisions are based 
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on that lone worst-case scenario (i.e., a predict-then-adapt approach) (Gersonius et al. 2013). In 
other cases, the robustness of planning decisions to a wide range of possible hydrologic futures is 
of paramount importance. In this context, minimizing under- and over-design regrets to extreme 
scenarios is of greater concern. In yet other cases, expectation decision making is desired, but 
there is insufficient information with which to assign probabilities to a set of distinct and 
possibly plausible climatic, or hydrologic, futures.  

Even if there is insufficient information to specify particular probability distributions, there may 
be enough information to identify a plausible range of uncertainty. The challenge of assigning 
plausible probabilities to climate change projections, along with increased interest in identifying 
adaptation solutions robust to a wide range of climate futures, have prompted numerous efforts 
to devise methods that acknowledge the deep uncertainty of climate change, as well as efforts to 
review and categorize them (Hallegate et al. 2012, Herman et al. 2015). Adaptation methods 
profiled in these two reviews include robust decision making (RDM) (Lempert 2002); the 
information gap, a.k.a. Info-Gap (Ben-Haim 2004); decision scaling (Brown et al. 2012, Spence 
and Brown 2016); and many-objective robust decision making (MORDM) (Kasprzyk et al. 
2013). Many of these approaches first aim to identify conditions under which water resources 
may be vulnerable now and subsequently determine how climate impacts may change 
vulnerability. One key feature of these robust decision-making frameworks is that a wide range 
of possible climate states is considered, as opposed to methods that consider only specific model-
generated outputs.  

Although robust decision-making approaches avoid some of the challenges of incorporating 
imprecise and/or deeply uncertain information that characterize approaches in which probability-
weighted GCMs are used to optimize adaptation planning decisions, many RDM methods do 
take probabilistic information into account in the latter stages of their analysis (Hallegate et al. 
2012).  

We have previously discussed regret-based decision making using probabilistic information 
about the relative likelihood of “trend” and “no trend” hydrologic futures. Regret-based criteria 
can be employed to identify solutions that are robust to foreseeable climate changes without 
assigning probabilities to particular climate or hydrologic scenarios. In particular, the minimax 
regret criterion (Savage 1951), which aims to minimize the regret incurred across a range of 
potential adaptation solutions, has been used in water resources planning for over half a century 
to make decisions without information about the relative likelihood of different future conditions 
(Maass et al. 1962, Yoe et al. 2017). Recently, it has been used to identify decisions that are 
robust to a wide range of plausible climate outcomes for numerous environmental management 
applications, including GHG mitigation (Loulou and Kanudia 1999), water supply and 
wastewater planning (Kang and Lansey 2013), and water quality management (Faraji et al. 
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2015). Efforts to apply this criterion to floodplain management are emerging as well but are still 
under development (van der Pol et al. 2015).  

There are two basic approaches for carrying out minimax regret analysis when stakeholders are 
concerned about minimizing worst-case impacts. The first approach involves comparing the 
performance of a small set of pre-specified alternatives under a small set of alternative future 
scenarios. A payoff matrix is constructed to determine the regrets associated with selecting a 
given alternative for a scenario other than the one for which it is most preferable (Revelle et al. 
2003, Faraji et al. 2015). The maximum regret for each alternative is computed and that 
alternative whose maximum regret is the lowest is selected. However, as Herman et al. (2015) 
observed, considering only pre-specified management alternatives inhibits the identification of 
other solutions, including ones that may not be optimal under any single climate change scenario 
but may be preferable when considering their robustness to a wide range of scenarios. Instead, it 
is promising to first identify solutions that may be optimal for individual scenarios and then run a 
subsequent optimization model to search for a single set of decisions that minimizes the 
maximum regret across all scenarios considered (Kang and Lansey 2013). This approach runs the 
risk of communicating a false precision while producing an inaccurate result if the small set of 
alternative future scenarios is wrong. 

In some situations, non-probabilistic decision criteria other than minimax regret may be 
preferable. For instance, Herman et al. (2015) observed that, in a multiobjective context, 
minimax regret may lead to the recommendation of a strategy that has a mediocre performance 
for some objectives in order to avoid a severe underperformance in a single objective. The 
minimum total regret criterion, which Faraji et al. (2015) employed, may offer a remedy for this 
problem. Revelle et al. (2003) also presented other pessimistic and optimistic decision criteria 
that can be used when the likelihood of future states, or scenarios, cannot be specified 
adequately, such as the maximin and maximax criteria. However, to the best of our knowledge, 
these criteria have not been employed in flood management, considering the additional 
uncertainty associated with the nonstationary behavior of future floods.  

Finally, one major challenge with climate change adaptation planning has been the ability to 
incorporate new information into decision making with a long time horizon, such as water 
resources infrastructure. Recent studies demonstrate that it may be possible to dynamically 
optimize adaptation plans as new information emerges, even when there is insufficient 
probabilistic information about the likelihood of these updated scenarios materializing (Beh et al. 
2015, van der Pol et al. 2015). While difficulties in assigning probabilities to GCM-driven 
climate change scenarios have motivated the use of non-probabilistic methods, scenarios of 
hydrologic change analyzed with non-probabilistic decision criteria could ostensibly include two 
or three alternative statistical models of future peak flows derived from observed streamflow 
data (e.g., different types of trend models). The rapid development of methods for making flood 
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management decisions under deep uncertainty should aid our ability to make flood adaptation 
decisions robust to plausible ranges of uncertainty of future flood projections from multiple 
models, even when the likelihood of each of the projections is difficult to determine.  

9. Recommendations and Future Work 

This report focused on the complexities associated with nonstationary hydrologic processes, as 
well as decision-oriented approaches for hydrologic design under nonstationary conditions. Over 
the past few years, there has been a tremendous increase in the research literature devoted to 
nonstationary hydrologic processes, particularly within the areas related to climate change, 
urbanization, and flood frequency analysis. Because of this growth in literature, it is difficult to 
reach consensus, or to provide guidance, concerning recommended methods of flood frequency 
analysis and adaptation planning under nonstationary conditions. Instead, this report has 
attempted to provide an overview of the state of our knowledge in this emerging field. 

There are numerous areas of research that could lead to improvements in our current flood 
frequency analysis approach. For example, many hydrologic frequency analyses have 
concentrated on a single design variable such as river discharge, in spite of the now numerous 
studies that have shown the need to consider several variables such as volumes, peaks, and 
possibly channel capacity. Changes due to land use, urbanization, climate, and infrastructure are 
likely to influence both the magnitudes of flood volumes and peaks as well as the geomorphic 
capacity of river channels and floodplains; thus, our methods of design must account for these 
interacting influences. Methods of attribution require further exploration and evaluation. 

Hydrologic rainfall-runoff models are widely used to convert observed rainfall data to runoff, 
and for subsequent application in a very wide range of water resource investigations. Such 
models are routinely used in hydrologic design because they are easily adapted to account for 
changes in climatic and land-use conditions (Gilroy and McCuen 2012). However, these models 
may exhibit less variability than observed discharge data (Kirby 1975), which could lead to 
systematic downward bias in the calculated design flood events. There is a need to evaluate such 
models for their ability to account for the numerous additional sources of uncertainty that arise 
when calibrating, validating, and applying such models in practice. Fortunately, USACE and its 
partners have been examining these issues for several years (e.g., Gutmann et al. 2016, 
Mizukami et al. 2016, Wood et al. 2016, Clark et al. 2015, Mendoza et al. 2015a and 2015b, 
Newman et al. 2015a and 2015b, Mizukami et al. 2015, Maurer et al. 2014, Moss et al. 2013).  

Each topic area in this report provides a potential opportunity to improve the existing flood 
frequency analysis method under nonstationary conditions. Consider the analogy between the 
development and evolution of flood frequency methods under stationary conditions. In the 
1970s, there was a great deal of attention given to new methods of flood frequency analysis. 
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Most of the attention was given to the problems of distribution selection and model parameter 
estimation. Such studies were able to document, for example, that the use of annual maximum 
series was often preferred to the use of partial duration series. Next, in the 1980s, attention 
focused on the use of regional versus at-site information, with a large literature showing clearly 
that regional methods of flood frequency analysis are to be preferred to at-site methods, because 
they often lead to more precise (lower root mean square error) estimates of design flood 
quantiles. Over the years, innovations in flood-frequency analysis addressed the use of historical 
flood information, handling both low and high outliers, construction of confidence intervals, 
estimation of regional skewness, and in the use of generalized least squares hydrologic 
regression procedures.  

By analogy, the field of flood frequency analysis under nonstationary conditions is in its infancy. 
Most of the literature reviewed has concentrated on detection of trends and incorporation of 
rather simplistic statistical models of such trends into existing flood frequency models. The most 
important issues addressed in the field of flood frequency analysis include the incorporation of 
regional information into flood frequency analysis and the precision of resulting design flood 
estimates. Additional attention should be devoted to the range of issues mentioned above, which 
led to improvements in flood frequency analysis under stationary conditions, because they are 
likely to lead to similar improvements under nonstationary conditions.  
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