Total Dissolved Gas and Temperature Monitoring at Chief Joseph Dam, Washington, Albeni Falls Dam, Idaho and Libby Dam, Montana 2007: Data Review and Quality Assurance

By Kent Easthouse
U.S. Army Corps of Engineers, Seattle District
Water Management Section

December 2007
Contents

Introduction ..1

Purpose and Scope ..1

Methods and Materials ...2

Site Characterization ..2
 Chief Joseph Dam ..2
 Albeni Falls Dam ..2
 Libby Dam ..2

Data Collection ...3
 Data Collection Methods ...3
 Data Collection Locations ...4

Data Completeness ...4

Quality-Assurance Procedures ..5

Water Quality Criteria ...7

Results and Discussion ..8

Total Dissolved Gas ..8
 Chief Joseph Dam ..8
 Albeni Falls Dam ..8
 Libby Dam ..9

Temperature ..9
 Chief Joseph Dam ..9
 Albeni Falls Dam ..9
 Libby Dam ..10

Conclusions ..11

References ..13

Tables ...14

Figures ...21
Tables

Table 1. Fixed monitoring station locations and sampling period, spill season 2007..............15
Table 2. Total dissolved gas data completeness for spill season 2007.16
Table 3. Temperature data completeness for spill season 2007......................................17
Table 4. Total dissolved gas and temperature calibration standards..............................18
Table 5. Difference between the primary standard and the laboratory calibrated total
dissolved gas instrument and thermometer for spill season 2007.................................19
Table 6. Washington Department of Ecology (WDOE), Idaho Department of
Environmental Quality (IDEQ), Montana Department of Environmental
Quality (MDEQ), and Colville Confederated Tribe (CCT) water quality
standards..20
Figures

Figure 1. Location of Seattle District projects in the upper Columbia River basin.22

Figure 2. Locations of total dissolved gas monitoring stations in 2007 for Chief Joseph Dam, Washington, Albeni Falls Dam, Idaho and Libby Dam, Montana.........................23

Figure 3. Difference between the secondary standard and the field barometers and field thermometers during spill season 2007...24

Figure 4. Difference between the secondary standard and the field total dissolved gas instrument for TDG pressure during spill season 2007...25

Figure 5. Total dissolved gas, spill, and flow (upper panel) and temperature, spill, and flow (lower panel) at Chief Joseph Dam Forebay (CHJ) and Chief Joseph Dam Tailwater (CHQW) stations during spill season 2007...26

Figure 6. Total dissolved gas, spill, and flow (upper panel) and temperature, spill, and flow (lower panel) at Albeni Falls Dam Forebay (ALFI) and Albeni Falls Dam Tailwater (ALQI) stations during spill season 2007...27

Figure 7. Total dissolved gas, spill, and flow (upper panel) and temperature, spill, and flow (lower panel) at the Libby Dam Tailwater (LBQM) station during spill season 2007..28
Introduction

The Columbia River drains over 259,000 square miles of the Pacific Northwest in the United States and Canada. The Snake, Kootenai, and Pend Oreille-Clark Fork systems are the largest tributaries of the Columbia River. The Seattle District Corps of Engineers (CENWS) operates three dams in the Columbia River Basin: Chief Joseph Dam on the Columbia River in Washington, Libby Dam on the Kootenai River in Montana, and Albeni Falls Dam on the Pend Oreille River in Idaho (Figure 1). These dams are operated to provide flood control, hydropower production, recreation, navigation, and fish and wildlife habitat.

Total dissolved gas (TDG), water temperature, and associated water quality processes are known to impact anadromous and indigenous fishes in the Columbia River system. Dams may alter a river's water quality characteristics by increasing TDG levels due to releasing water through the spillways and by altering temperature gradients due to the creation of reservoirs. Spilling water at dams can result in increased TDG levels in downstream waters by plunging the aerated spill water to depth where hydrostatic pressure increases the solubility of atmospheric gases. Elevated TDG levels generated by spillway releases from dams can promote the potential for gas bubble trauma in downstream aquatic biota (Weitkamp and Katz 1980; Weitkamp et al. 2002). Water temperature has a significant impact on fish survivability, TDG saturations, the biotic community, chemical and biological reaction rates, and other aquatic processes.

Purpose and Scope

The Seattle District Corps of Engineers monitored total dissolved gas (TDG) and temperature at Chief Joseph Dam, Albeni Falls Dam, and Libby Dam during the 2007 spill season, which lasted from April 1 – September 30, 2007. The purpose of the monitoring program was to provide real-time TDG data to the U.S. Army Corps of Engineers (USCOE) to allow for the understanding and management of flow and spill at dams on the Columbia River system. This report describes the TDG and temperature quality assurance (QA) results and associated data for the Chief Joseph Dam, Albeni Falls Dam, and Libby Dam monitoring programs.
Methods and Materials

Site Characterization

Chief Joseph Dam

Chief Joseph Dam is located at river mile 545 on the Columbia River in Washington, about 51 miles downstream of Grand Coulee Dam (Figure 1). The dam is a concrete gravity dam, 230 feet high, with 19 spillway bays which abut the right bank. The spillway is controlled by 36-foot wide by 58-foot high tainter gates and is designed to pass releases up to 1,200,000 cubic feet per second (cfs) at a maximum water surface elevation of 958.8 feet. The TDG exchange characteristics for Chief Joseph Dam were determined during a comprehensive study of TDG in June 1999 (Schneider and Carroll 1999). Results showed the TDG exchange during spillway operations at Chief Joseph Dam to be an exponential function of spillway discharge, weakly related to tailwater depth of flow, and with little powerhouse entrainment.

Construction of spillway deflectors during 2007 at Chief Joseph Dam restricted the number of spillway bays available at the project. Depending on the location of the deflector construction, the project was only able to spill from about 8 to 11 of the 19 spillway bays.

Albeni Falls Dam

Albeni Falls Dam is located near the Washington-Idaho border on the Pend Oreille River at river mile 90.1. The dam became operational in 1952 and is about 2.5 miles upstream and east of the city of Newport, Washington, 26 miles west of the city of Sandpoint, Idaho, and 29 miles downstream from Lake Pend Oreille (Figure 1). Lake Pend Oreille is a natural lake that is located in a glacially scoured basin in the Purcell Trench in Northern Idaho (Fields et al. 1996). The Clark Fork is the major inflow to the lake supplying about 85 percent of the surface water inflow to the lake and the outlet arm (Frenzel, 1991). The dam is formed by two separate concrete gravity structures, a 10-bay spillway on the left or southwest side of the river and a powerhouse on the right or northeast side of the river. Total dissolved gas exchange studies conducted by Schneider (2004) concluded that spillway releases resulted in small increases in TDG pressures in the Pend Oreille River. Results showed the TDG exchange during spillway operations increased as a function of forebay TDG pressure, tailwater depth, unit spillway discharge, total head, and spillway gate submergence.

Libby Dam

Libby Dam is located at river mile 221.9 on the Kootenai River in Montana about 40 miles south of the Canadian border, as shown in Figure 1. The dam is approximately 11 miles east of the town of Libby, Montana and 221.9 miles upstream from the confluence of the Kootenai River
with the Columbia River in British Columbia. Behind Libby Dam, Lake Koocanusa extends 90 miles, with about 48 miles extending into British Columbia. The dam is a straight concrete gravity gate-controlled dam, 370 feet high, with two spillway bays. Total dissolved gas exchange studies conducted by Schneider and Carroll (2003) showed that spillway releases at Libby Dam resulted in elevated TDG pressures in the Kootenai River. The TDG saturation in spillway releases increased abruptly from 104 to 129 percent saturation as the spill discharge increased from 0 to 4,000 cfs. A mild increase in TDG saturation of spillway releases of 129 to 134 percent saturation was observed as spillway discharges increased from 4,000 to 15,000 cfs.

Data Collection

Data were collected at two fixed monitoring stations at Chief Joseph Dam (CHJ and CHQW) and Albeni Falls Dam (ALFI and ALQI), and one fixed monitoring station at Libby Dam (LBQM) during the 2007 spill season (Figure 2). Fixed monitoring station location details and dates of operation are summarized in Table 1 and shown in Figure 2. Parameters monitored at each location included hourly measurements of water temperature, barometric pressure, TDG pressure, and TDG probe depth.

Data Collection Methods

Data collection methods followed procedures set forth in the U.S. Corps of Engineers Plan of Action for Dissolved Gas Monitoring 2007 (USCOE 2006). Data collection methods used at Chief Joseph Dam, Albeni Falls Dam and Libby Dam were slightly different and are briefly summarized below. Instrumentation at Chief Joseph Dam consisted of a Hydrolab MiniSonde 4a water quality probe, a Common Sensing TBO-L electronic barometer, a Geomation 2380 DCP, a radio transmitter, and a power source. The barometer, TDG probe and DCP were powered by a 12-volt battery that was charged by a 120-volt AC line. Measurements were made every hour and the data were transmitted via radio directly to the Seattle District’s HEC-DSS water quality database. Data were then sent out from Seattle every hour via file transfer protocol (FTP) to the Corps of Engineers Northwestern Division (CENWD) in Portland, Oregon. The data were then stored in the Columbia River Operational Hydromet Management System (CROHMS) database.

Instrumentation at Albeni Falls Dam consisted of a Hydrolab MiniSonde 4a water quality probe, a Common Sensing TBO-L electronic barometer, a Geomation 2380 DCP, a radio transmitter, and a power source. The TDG probe, DCP, and radio transmitter were powered by a 12-volt battery that was charged by either a 120-volt AC line at ALFI or a solar panel at ALQI. Measurements were made every hour and the data were transmitted via radio directly to the Seattle District’s HEC-DSS water quality database. Data were then sent out from Seattle every hour via FTP to the CROHMS database in Portland, Oregon. Damage to the ALFI station during the 2007 winter season necessitated the use of a TDG logger from April 1, 2007 until the station was repaired in August, 2007.
Instrumentation at Libby Dam consisted of a Hydrolab MiniSonde 4a water quality probe, a Common Sensing TBO-L electronic barometer, a Geomation 2380 DCP, a radio transmitter, and a power source. The TDG probe, DCP, and radio transmitter were located on the left bank of the Kootenai River and powered by a 12-volt battery that was charged by a solar panel. Measurements were made every hour and the data were transmitted via radio directly to the Seattle District’s HEC-DSS water quality database. Data were then sent out from Seattle every hour via FTP to the CROHMS database in Portland, Oregon.

Data Collection Locations

At the Chief Joseph Dam forebay station (CHJ) the water quality probe was located in Lake Rufus Woods near the left bank by the powerhouse. The probe was deployed directly into the water off of the boathouse’s floating dock at a depth of 20 feet (see Figure 2). At the Chief Joseph Dam tailwater station (CHQW) the water quality probe was deployed along the right bank of the river, 0.75 miles downstream from the dam. The probe was placed inside an anchored, perforated PVC pipe that extended into the river to a depth of at least 10 feet during low flow conditions.

At Albeni Falls Dam forebay station (ALFI) the water quality probe was located in the Pend Oreille River on the left bank near the spillway. The probe was placed inside a perforated HDPE pipe that was anchored to the railroad bridge footing and extended into the river to a depth of at least 10 feet during low river level conditions (see Figure 2). At Albeni Falls Dam tailwater station (ALQI) the water quality probe was deployed along the left bank of the river, 0.5 miles downstream from the dam. The probe was placed inside an anchored perforated PVC pipe that extended into the river to a depth of at least 10 feet during low flow conditions.

At the Libby Dam tailwater station (LBQM) the water quality probe was deployed along the left bank of the river, 0.6 miles downstream from the dam at the USGS gaging station (No. 12301933) located below Libby Dam (Figure 2). Similar to stations CHQW and ALQI, the probe was placed inside an anchored perforated PVC pipe that extended into the Kootenai River to a depth of at least 6 feet during low flow conditions.

Data Completeness

Data completeness and quality for TDG and temperature data collected in 2007 are summarized in Tables 2 and 3. The data were based upon the number of planned monitoring hours from April 1 through September 30. Any hours without TDG or barometric pressure data were considered missing data for TDG percent saturation since percent saturation is calculated as total dissolved gas, in millimeters of mercury (mm Hg), divided by barometric pressure and multiplied by 100. The percentage of real-time TDG and temperature monitoring data received was calculated from the number of missing hourly values versus the number of planned hourly values. The percent of real-time TDG and temperature data passing quality assurance represents...
the percent of data that was received as real-time data and passed the quality assurance review of data described below.

Once the real-time data were received and missing data were flagged, the following quality assurance review procedures occurred. First, tables of raw data were visually inspected for erroneous data resulting from DCP malfunctions or improper transmission of data value codes. Second, data tables were reviewed for sudden increases in temperature, barometric pressure, or TDG pressure that could not be correlated to any hydrologic event and therefore may be a result of mechanical problems. Third, a data checklist program was used to assist in identifying erroneous data. Values outside the data checklist program range of acceptable values (0 to 30 °C for temperature, 600 to 800 mm Hg for barometric pressure, and 600 to 1000 mm Hg for TDG pressure) were flagged and reviewed to determine if the data were acceptable or an artifact of a DCP or instrument malfunction. Fourth, graphs of the data were created and analyzed in order to identify unusual spikes in the data. These spikes were then further investigated in order to identify the causes of error. Fifth, graphs of forebay data minus tailwater data were created and analyzed to identify erroneous data. For example, during periods of no spill if forebay and tailwater station TDG or temperature data disagreed by greater than 30 mm Hg or 3 °C, respectively, the data were flagged as suspect and reviewed to determine acceptability. Suspect data were corrected if possible. Data that could not be corrected were flagged as rejected.

As shown in Tables 2 and 3, problems with receiving real-time hourly TDG and temperature data were encountered at all monitoring stations. Missing data for all stations in 2007 were due to DCP malfunctions and programming problems. Only 3 hours of TDG and temperature data were rejected at stations CHJ and CHQW, and only 1 hour of TDG and temperature data were rejected at station LBQM due to probes being out of the water during routine calibration periods. At station ALFI, 140 hours of TDG and temperature data were rejected due to low TDG saturations resulting from (1) the probe becoming tangled with other equipment during the deployment, and (2) the probe drifting out of calibration. At station ALQI, 138 hours of TDG and temperature data were rejected due to low TDG saturations resulting from the probe drifting out of calibration.

Quality-Assurance Procedures

Fixed monitoring stations were calibrated every two weeks during the 2007 monitoring season following procedures outlined in the *U.S. Corps of Engineers Plan of Action for Dissolved Gas Monitoring 2007* (USCOE 2006). Data quality assurance and calibration procedures included calibration of instruments in the laboratory and calibration of instruments in the field. Two TDG probes were assigned to each monitoring site (ten probes total) to allow laboratory calibrations between deployments and to provide back-up sensors in the event of equipment failure.

Prior to field service visits, the secondary standard TDG probe and the replacement TDG probe were laboratory calibrated using the primary standard. All primary standards were National Institute of Science and Technology (NIST) traceable and maintained according to
manufacturers recommendations. Table 4 summarizes the parameters and standards utilized for calibration during the 2007 monitoring season.

Water quality probes were laboratory calibrated using the following procedures. TDG pressure sensors were checked in air with the membrane removed. Ambient pressures determined from the NIST traceable mercury barometer served as the zero value for total pressure. The slope for total pressure was determined by adding known pressures to the sensor. Using a NIST traceable digital pressure gauge, comparisons were made at TDG saturations of 100 percent, 113 percent, 126 percent, and 139 percent (Table 5). If any measurement differed by more than 0.5 percent saturation from the primary standard, the sensor was adjusted and rechecked over the full calibration range. As seen in Table 5, most calibrations were within 0 to 0.5 percent total dissolved gas saturation.

A new TDG membrane was assigned to each probe at the beginning of the monitoring season. The TDG membranes were allowed to dry between deployments and tested for integrity by immersion in supersaturated water (seltzer water) prior to redeployment. A successful test was indicated by a rapid pressure increase upon immersion followed by a gradual pressure decline upon removal. Deviation indicated a problem with the membrane and the procedure was repeated with a new membrane until satisfactory results were achieved.

Laboratory calibrations of the water quality probe’s temperature sensor were performed using a NIST traceable thermometer and are shown in Table 5. If the measurements differed by more than 0.2 °C the probe was returned to the manufacturer for maintenance. As seen in Table 5 most calibrations were within 0.1 °C for temperature. In addition, calibration of the secondary barometric standard was performed in the laboratory using a NIST traceable barometric pressure gauge. If the barometer was not within 1mm Hg of the primary standard, the secondary standard was re-calibrated.

Every two weeks a currently operating field probe was replaced with a laboratory calibrated probe, which also operated as the secondary standard for the field probe. Prior to replacement, every probe was field calibrated using the following methods. First, the laboratory calibrated probe (secondary standard) was placed in supersaturated water (seltzer water) to test for the integrity of the probe and the responsiveness of the membrane. If the membrane was not responding properly it was replaced and re-tested. Second, the difference in barometric pressure, TDG pressure, and temperature between the field probe and the laboratory calibrated probe (secondary standards) were measured in-situ and recorded. If the field probe disagreed with the secondary standard probe by more than 0.2°C for water temperature or 10 mm Hg for TDG pressure, the probe was removed and rechecked to field standards. If the field barometer disagreed with the secondary standard barometer by more than 1 mm Hg, the barometer was adjusted and rechecked.

The comparisons of the field barometer and the secondary barometric pressure standard, and the field temperature and the secondary standard temperature are shown in Figure 3. In general, the field barometer was within 2 mm Hg of the secondary standard at all locations. The temperature
sensor secondary standard and the field temperature sensor results were generally within 0.2 °C at all locations except the Albeni Falls tailwater station (ALQI).

Differences between the field TDG sensor and the secondary standard TDG sensor are presented in Figure 4. As shown in Figure 4, the majority of data at stations CHQW and LBQM were generally within 10 mm Hg difference between the field sensor and the secondary standard with periodic outliers ranging from 15 mm Hg at CHQW to 27 mm Hg at LBQM. At stations CHJ, ALQI, and ALFI TDG differences exceeded 10 mm Hg for the majority of data with outliers ranging from 25 mm Hg at ALFI, 32 mm Hg at ALQI, and 42 mm Hg at CHJ. The cause of the outlier points were determined to be due to a malfunctioning secondary standard TDG sensor used at these stations.

Water Quality Criteria

The Washington Department of Ecology (WDOE) and the Colville Confederated Tribe (CCT) determines water quality criteria for the Columbia River at Chief Joseph Dam in Washington, the Idaho Department of Environmental Quality (IDEQ) determines water quality criteria for the Pend Oreille River at Albeni Falls Dam in Idaho, and the Montana Department of Environmental Quality (MDEQ) determines water quality criteria for the Kootenai River at Libby Dam in Montana. In addition, because Albeni Falls Dam is near the border of Washington State, WDOE water quality criteria are considered.

The CCT has classified the Columbia River as a Class I water body above Chief Joseph Dam and a Class II water body below the dam. The WDOE classified the Columbia River above and below Chief Joseph Dam as a Non-Core Salmon/Trout water body. The IDEQ has classified the Pend Oreille River at Albeni Falls Dam as an Aquatic Life Cold waterbody, while the WDOE has classified the Pend Oreille River at the Idaho/Washington border as a Non-Core Salmon/Trout Special Condition water body. The MDEQ has classified the Kootenai River below Libby Dam as a Class B-1 water body. Water quality standards for TDG and temperature for Chief Joseph Dam, Albeni Falls Dam and Libby Dam are presented in Table 6. At Chief Joseph Dam, the State of Washington and the Colville Tribe have a similar TDG standard of 110 percent. However, Washington allows exceedance of the 110 percent TDG criteria to facilitate fish passage spills as shown in Table 6. Chief Joseph Dam was granted a water quality criteria waiver by WDOE for the 2007 spill season for the purpose of managing system spill for improved fish conditions.
Results and Discussion

Total Dissolved Gas

Chief Joseph Dam

Hourly total dissolved gas saturations, river flows, and spill volumes for Chief Joseph Dam during the 2007 monitoring season are presented in Figure 5. Columbia River flow volumes were moderate during 2007 with maximum flows generally in the 160,000 to 180,000 cfs range. Consequently, Chief Joseph Dam did not spill during the 2007 season except for a planned 24-hour spill test on April 22 and April 23. The one day spill test was conducted over two bays with completed deflectors to determine the effects of deflector construction on foundation uplift pressures. Spill over the two bays ranged from 6,000 cfs to 32,000 cfs between April 22, 2007 at 0600 hours and April 23, 2003 at 0200 hours (Figure 5).

Total dissolved gas saturations at Chief Joseph forebay station (CHJ) exceeded 110 percent from about the end of May to the end of July 2007. Because little degassing occurs during transport through Lake Rufus Woods, TDG levels measured at the Chief Joseph forebay station are likely a function of TDG levels released from Grand Coulee Dam. The Chief Joseph tailwater station (CHQW) exceeded 110 percent TDG saturation from about the end of May to the end of July, 2007. During the April 22 and 23, 2007 spill test, TDG levels measured at CHQW ranged from about 107 percent during a spill of 6,000 cfs to about 120 percent during a spill of about 32,000 cfs.

Albeni Falls Dam

Hourly total dissolved gas saturations, river flows, and spill volumes for Albeni Falls Dam during the 2007 monitoring season are presented in Figure 6. Pend Oreille River flow volumes were low to moderate during 2007 with a maximum flow of about 57,000 cfs recorded on June 6, 2007, which is lower than the historical (1952-1998) post-dam average maximum flow of about 80,000 cfs. Consequently, Albeni Falls Dam experienced low spill volumes during the 2007 season. Spillway flows ranged from about 0 to 27,000 cfs, with the majority of spill occurring between April 1 and July 1, 2007.

Total dissolved gas saturations at Albeni Falls forebay station (ALFI) were greater than 110 percent from about June 2, 2007 to June 6, 2007 (Figure 6). The nearest upstream project that could be a potential source of TDG to the forebay is Cabinet Gorge Dam located about 50 miles upstream on the Clark Fork River at the border of Idaho and Montana (see Figure 1). Parametrix (1999) reported that only minor degassing occurred in the Clark Fork-Pend Oreille River system between Cabinet Gorge Dam and Albeni Falls Dam during the 1998 spill season. Therefore, it is likely that Cabinet Gorge Dam was the source of the elevated TDG measured at the forebay.
Total dissolved gas saturations at Albeni Falls tailwater station (ALQI) periodically exceeded 110 percent from about May 2, 2007 to June 30, 2007 (Figure 6). The highest TDG saturation recorded was about 115 percent on June 4, 2007 during a spillway release of about 12,000 cfs. In general, the greatest increase in TDG saturations between the forebay and tailwater were measured during spillway releases that used 6 or less of the 10 possible spill bays. In general, TDG saturations decreased when the spill was spread out over at least 8 of 10 spill bays. This reduction in TDG generation by spreading the spill out over more spill bays was observed during the total dissolved gas exchange study conducted at Albeni Falls in 2003 (Schneider 2007).

Libby Dam

Hourly total dissolved gas saturations, river flows, and spill volumes for Libby Dam during the 2007 monitoring season are presented in Figure 7. No spill occurred at Libby Dam in 2007. Total dissolved gas saturations ranged from about 97 percent to 108 percent. The periodic rise and fall in TDG saturations during non spill conditions was likely related to the use of the selective withdrawal system to supply water to the penstocks from different thermal layers in the reservoir as Lake Koocanusa begins to thermally stratify (Hoffman 2007). Because the solubility of a gas in water is inversely proportional to the water temperature, the increase and decrease in water temperature likely resulted in the rise and fall in TDG saturations measured during non spill time periods (Figure 7).

Temperature

Chief Joseph Dam

Maximum water temperatures measured at the Chief Joseph forebay (CHJ) and tailwater (CHQW) stations were similar, and ranged from about 4 °C in April to about 20 °C in early September (see Figure 5). The similar water temperatures at the forebay and tailwater stations indicate well-mixed conditions in the forebay. Water temperatures at the forebay were greater than 16 °C from about July 15 through the end of monitoring on September 30, 2007, and were greater than 18 °C from August 1 through September 24, 2007. Water temperatures at the tailwater exceeded 18 °C from about August 1 through September 24, 2007.

Albeni Falls Dam

Temperatures measured at the Albeni Falls forebay (ALFI) and tailwater (ALFW/ALQI) stations were similar, and ranged from about 5 °C in April to 24 °C in July (see Figure 6). The similar water temperatures at the forebay and tailwater stations indicate well-mixed conditions in the forebay. Daily average water temperatures at the forebay were greater than 19 °C from about July 5 through September 17, 2007, while the maximum daily temperature exceeded 22 °C from about July 11 through August 19, 2007. Similarly, daily average water temperatures at the tailwater exceeded 19 °C from about July 5 through September 17, 2007, with the maximum
daily temperature exceeding 22 °C from about July 11 through August 19, 2007. Diurnal
temperature cycling was minor at both the forebay station (ALFI) and the tailwater station (ALQI) and generally in the range of 1 °C.

Libby Dam

Temperature measured at the Libby Dam tailwater (LBQM) station ranged from about 3 °C in April to about 15 °C in August (see Figure 7). Temperatures at Libby Dam are controlled by a selective withdrawal system. This system is operated to better reflect pre-impoundment temperature conditions in the river. In 2007, as the waters in Lake Koocanusa begin to thermally stratify in April and May, the selective withdrawal system was operated to intake water from shallower depths to increase discharge temperatures and produce more natural downstream water temperatures to benefit aquatic organisms. As seen in Figure 7, temperature increases and decreases during May through August represent operational changes in the selective withdrawal system, as well as periods of cool stormy weather breaking up the thermocline resulting in decreases in downstream temperatures (Hoffman 2007).
Conclusions

Evaluation of the Quality Assurance and monitoring results yielded the following conclusions:

- Data completeness for TDG data ranged from 91.5 percent at the Albeni Falls Dam forebay station (ALFI) to 99.5 percent at the Chief Joseph Dam forebay station (CHJ) and for temperature data ranged from 98.2 percent at Albeni Falls Dam tailwater station (ALQI) to 99.5 percent at Albeni Falls Dam forebay station (ALFI). Missing data were largely due to DCP malfunctions and programming problems.

- Laboratory calibration data were good and within 0.1 °C for temperature and 1 percent saturation for TDG. Field calibration data were good and generally within 2mm Hg of the secondary standard barometer, 0.2°C of the secondary standard thermometer, and 10 mm Hg saturation of the secondary standard TDG instrument. However, there were several total dissolved gas saturation differences that exceeded 10 mm Hg saturation. Outlier point total dissolved gas saturation differences ranging from 15 mm Hg at CHQW, 25 mm Hg at ALQI, 27 mm Hg at LBQM, 32 mm Hg at ALQI, and 42 mm Hg at CHJ were determined to be due to a malfunctioning secondary standard TDG sensor used at these stations. Careful inspection of the probes determined that field TDG saturation calibration problems were not due to faulty TDG membranes or sensors.

- Total dissolved gas saturations at Chief Joseph Dam forebay (CHJ) exceeded 110 percent from about the end of May through July 2007. TDG levels measured at Chief Joseph forebay (CHJ) were largely a function of TDG levels released from Grand Coulee Dam. The Chief Joseph tailwater station (CHQW) exceeded 110 percent TDG saturation from about the end of May through July 2007. During the April 22 and 23, 2007 spill test, TDG levels measured at CHQW ranged from about 107 percent during a spill of 6,000 cfs to about 120 percent during a spill of about 32,000 cfs.

- Total dissolved gas saturations at Albeni Falls Dam forebay station (ALFI) and tailwater station (ALQI) periodically exceeded 110 percent during the 2007 spill season. TDG saturations measured at Albeni Falls Dam forebay (ALFI) were largely a function of upstream TDG saturations in the Clark Fork and Pend Oreille rivers. The highest TDG saturation recorded at the tailwater station (ALQI) was about 115 percent on June 4, 2007 during a spillway release of about 12,000 cfs. In general, the greatest increase in TDG saturations between the forebay and tailwater
were measured during spillway releases that used 6 or less of the 10 possible spill bays.

- Water temperatures at the Chief Joseph Dam forebay (CHJ) and tailwater (CHQW) were greater than 16 °C and 18 °C from about mid July through September 2007 and early August through late September 2007, respectively. Similarly, water temperatures at Albeni Falls Dam forebay (ALFI) and tailwater (ALFW/ALQI) were greater than 19 °C from about early July through mid September 2007. Temperatures measured at the Libby Dam tailwater (LBQM) station ranged from about 3 °C in April to 15 °C in August.
References

Schneider, M.L, Yates L.I., and K.L. Barko 2007. Total dissolved gas exchange at Albeni Falls Dam 2003. Prepared for the Seattle District Corps of Engineers by the U.S. Army Engineer Research and Development Center Coastal and Hydraulics Laboratory, Dallesport, WA.

Schneider, M.L. and Carroll, J.C. 1999. TDG exchange during spillway releases at Chief Joseph Dam, near-field study, June 6-10, 1999. Prepared for the Seattle District Corps of Engineers by the U.S. Army Waterways Experiment Station, Vicksburg, MS.

Schneider, M.L. and Carroll, J.C. 2003. Total dissolved gas exchange at Libby Dam, Montana June-July 2002. Prepared for the Seattle District Corps of Engineers by the U.S. Army Engineer Research and Development Center, Vicksburg, MS.

Tables
Table 1. Fixed monitoring station locations and sampling period, spill season 2007.

<table>
<thead>
<tr>
<th>Site Identifier</th>
<th>Station Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>2007 Sampling Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHJ</td>
<td>Chief Joseph Dam Forebay</td>
<td>47° 59' 38"</td>
<td>119° 38' 43"</td>
<td>04/01/07 - 09/30/07</td>
</tr>
<tr>
<td>CHQW</td>
<td>Chief Joseph Dam Tailwater</td>
<td>48° 00' 17"</td>
<td>119° 39' 30"</td>
<td>04/01/07 - 09/30/07</td>
</tr>
<tr>
<td>ALFI</td>
<td>Albeni Falls Dam Forebay</td>
<td>48° 10' 40"</td>
<td>116° 59' 52"</td>
<td>04/01/07 - 09/30/07</td>
</tr>
<tr>
<td>ALQI</td>
<td>Albeni Falls Dam Tailwater</td>
<td>48° 10' 39"</td>
<td>117° 00' 08"</td>
<td>04/01/07 - 09/30/07</td>
</tr>
<tr>
<td>LBQM</td>
<td>Libby Dam Tailwater</td>
<td>48° 19' 07"</td>
<td>115° 19' 07"</td>
<td>04/01/07 - 09/30/07</td>
</tr>
</tbody>
</table>
Table 2. **Total dissolved gas data completeness for spill season 2007.**

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Station Abbreviation</th>
<th>Planned monitoring in hours</th>
<th>Number of missing hourly values</th>
<th>Percentage of real-time TDG monitoring data received</th>
<th>Percentage of real-time TDG data received and passing quality assurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Joseph Forebay</td>
<td>CHJ</td>
<td>4392</td>
<td>16</td>
<td>99.6</td>
<td>99.5</td>
</tr>
<tr>
<td>Chief Joseph Tailwater</td>
<td>CHQW</td>
<td>4392</td>
<td>76</td>
<td>98.3</td>
<td>98.2</td>
</tr>
<tr>
<td>Albeni Falls Forebay</td>
<td>ALFI</td>
<td>4392</td>
<td>217</td>
<td>95.1</td>
<td>91.9</td>
</tr>
<tr>
<td>Albeni Falls Tailwater</td>
<td>ALQI</td>
<td>4392</td>
<td>186</td>
<td>95.8</td>
<td>92.6</td>
</tr>
<tr>
<td>Libby Tailwater</td>
<td>LBQM</td>
<td>4392</td>
<td>59</td>
<td>98.7</td>
<td>98.6</td>
</tr>
</tbody>
</table>
Table 3. Temperature data completeness for spill season 2007.

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Station Abbreviation</th>
<th>Planned monitoring in hours</th>
<th>Number of missing hourly values</th>
<th>Percentage of real-time Temperature monitoring data received</th>
<th>Percentage of real-time Temperature data received and passing quality assurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Joseph Forebay</td>
<td>CHJ</td>
<td>4392</td>
<td>17</td>
<td>99.6</td>
<td>99.5</td>
</tr>
<tr>
<td>Chief Joseph Tailwater</td>
<td>CHQW</td>
<td>4392</td>
<td>76</td>
<td>98.3</td>
<td>98.2</td>
</tr>
<tr>
<td>Albeni Falls Forebay</td>
<td>ALFI</td>
<td>4392</td>
<td>2</td>
<td>99.9</td>
<td>99.8</td>
</tr>
<tr>
<td>Albeni Falls Tailwater</td>
<td>ALQI</td>
<td>4392</td>
<td>75</td>
<td>98.3</td>
<td>98.2</td>
</tr>
<tr>
<td>Libby Tailwater</td>
<td>LBQM</td>
<td>4392</td>
<td>63</td>
<td>98.6</td>
<td>98.5</td>
</tr>
</tbody>
</table>
Table 4. Total dissolved gas and temperature calibration standards.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Parameter</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Atmospheric Pressure</td>
<td>NIST traceable mercury barometer</td>
</tr>
<tr>
<td>Primary</td>
<td>Total Pressure</td>
<td>NIST traceable digital pressure gage</td>
</tr>
<tr>
<td>Primary</td>
<td>Water Temperature</td>
<td>NIST traceable mercury thermometer</td>
</tr>
<tr>
<td>Secondary</td>
<td>Atmospheric Pressure</td>
<td>Electronic barometer</td>
</tr>
<tr>
<td>Secondary</td>
<td>Total Pressure</td>
<td>Hydrolab MiniSonde 4a</td>
</tr>
<tr>
<td>Secondary</td>
<td>Water Temperature</td>
<td>Hydrolab MiniSonde 4a</td>
</tr>
</tbody>
</table>
Table 5. Difference between the primary standard and the laboratory calibrated total dissolved gas instrument and thermometer for spill season 2007.

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Total Dissolved Gas Pressure (% Saturation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>N</td>
<td>60</td>
</tr>
<tr>
<td>Minimum</td>
<td>-0.4</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.18</td>
</tr>
<tr>
<td>Median</td>
<td>0.01</td>
</tr>
<tr>
<td>Average</td>
<td>0.01</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Table 6. Washington Department of Ecology (WDOE), Idaho Department of Environmental Quality (IDEQ), Montana Department of Environmental Quality (MDEQ), and Colville Confederated Tribe (CCT) water quality standards.

<table>
<thead>
<tr>
<th>Parameter/Project</th>
<th>Regulator</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief Joseph</td>
<td>WDOE</td>
<td>Shall not exceed 110% of saturation at any point of sample collection, except during spill season for fish passage in which total dissolved gas shall be measured as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) Must not exceed an average of 115% as measured in the forebay of the next downstream dam.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Must not exceed an average of 120% as measured in the tailrace of each dam; TDG is measured as an average of the 12 highest consecutive hourly readings in any one day, relative to atmospheric pressure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) A maximum TDG one-hour average of 125% as measured in the tailrace must not be exceeded during spillage for fish passage.</td>
</tr>
<tr>
<td>CCT</td>
<td></td>
<td>Shall not exceed 110% of saturation at any point of sample collection.</td>
</tr>
<tr>
<td>Albeni Falls</td>
<td>IDEQ</td>
<td>Shall not exceed 110% of saturation at any point of sample collection.</td>
</tr>
<tr>
<td></td>
<td>WDOE</td>
<td>Shall not exceed 110% of saturation at any point of sample collection.</td>
</tr>
<tr>
<td>Libby</td>
<td>MDEQ</td>
<td>Shall not exceed 110% of saturation at any point of sample collection.</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief Joseph</td>
<td>WDOE</td>
<td>Non-Core Salmon/Trout: Shall not exceed 17.5°C as measured by the 7-day average of the daily maximum temperatures (7-DADMax) due to human activities. When natural conditions exceed a 7-DADMax of 17.5°C, no temperature increase will be allowed which will raise the receiving water 7-DADMax temperature by greater than 0.3°C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class I: Shall not exceed 16.0°C due to human activities. When natural conditions exceed 16.0°C, no temperature increase will be allowed which will raise the receiving water by greater than 0.3°C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class II: Shall not exceed 18.0°C due to human activities. When natural conditions exceed 18.0°C, no temperature increase will be allowed which will raise the receiving water by greater than 0.3°C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class B-1: A 0.6°C maximum increase above naturally occurring water temperature is allowed within the range 0°C to 18°C; within the naturally occurring range 18°C to 19°C, no discharge is allowed which causes the water temperature to exceed 19.5°C.</td>
</tr>
<tr>
<td>Albeni Falls</td>
<td>IDEQ</td>
<td>Aquatic Life Cold: Water temperatures of 22°C or less with a maximum daily average less than 19°C.</td>
</tr>
<tr>
<td></td>
<td>WDOE</td>
<td>Non-Core Salmon/Trout Special Condition: Temperature shall not exceed a 1-DMax of 20°C due to human activities. When natural conditions exceed the criteria, no temperature increase will be allowed which will raise the receiving water by greater than 0.3°C.</td>
</tr>
<tr>
<td>Libby</td>
<td>MDEQ</td>
<td>Class B-1: A 0.6°C maximum increase above naturally occurring water temperature is allowed within the range 0°C to 18°C; within the naturally occurring range 18°C to 19°C, no discharge is allowed which causes the water temperature to exceed 19.5°C.</td>
</tr>
</tbody>
</table>
Figures
Figure 1. Location of Seattle District projects in the upper Columbia River basin.
Figure 2. Locations of total dissolved gas monitoring stations in 2007 for Chief Joseph Dam, Washington, Albeni Falls Dam, Idaho and Libby Dam, Montana.
Figure 3. Difference between the secondary standard and the field barometers and field thermometers during spill season 2007.
Figure 4. Difference between the secondary standard and the field total dissolved gas instrument for TDG pressure during spill season 2007.
Figure 5. Total dissolved gas, spill, and flow (upper panel) and temperature, spill, and flow (lower panel) at Chief Joseph Dam Forebay (CHJ) and Chief Joseph Dam Tailwater (CHQW) stations during spill season 2007.
Figure 6. Total dissolved gas, spill, and flow (upper panel) and temperature, spill, and flow (lower panel) at Albeni Falls Dam Forebay (ALFI) and Albeni Falls Dam Tailwater (ALQI) stations during spill season 2007.
Figure 7. Total dissolved gas, spill, and flow (upper panel) and temperature, spill, and flow (lower panel) at the Libby Dam Tailwater (LBQM) station during spill season 2007.